{-# OPTIONS_GHC -Wunused-imports #-}

{-|

This module implements the type checking part of generalisable variables. When we get here we have
a type checking problem for a type (or telescope) containing a known set of generalisable variables
and we need to produce a well typed type (or telescope) with the correct generalisations. For instance,
given

@
variable
  A  : Set
  n  : Nat
  xs : Vec A n

foo : SomeType xs
@

generalisation should produce @{A : Set} {n : Nat} {xs : Vec A n} → SomeType xs@ for the type of
@foo@.

The functions `generalizeType` and `generalizeTelescope` don't have access to the abstract syntax to
be type checked (@SomeType xs@ in the example). Instead they are provided a type checking action
that delivers a `Type` or a `Telescope`. The challenge is setting up a context in which @SomeType
xs@ can be type checked successfully by this action, without knowing what the telescope of
generalised variables will be. Once we have computed this telescope the result needs to be
transformed into a well typed type abstracted over it.

__At no point are we allowed to cheat!__ Any transformation between well typed terms needs to be done
by well typed substitutions.

The key idea is to run the type checking action in the context of a single variable of an unknown
type. Once we know what variables to generalise over this type is instantiated to a fresh record
type with a field for each generalised variable. Turning the result of action into something valid
in the context of the generalised variables is then a simple substitution unpacking the record
variable.

In more detail, generalisation proceeds as follows:

- Add a variable @genTel@ of an unknown type to the context (`withGenRecVar`).

@
  (genTel : _GenTel)
@

- Create metavariables for the generalisable variables appearing in the problem and their
  dependencies (`createGenValues`). In the example this would be

@
  (genTel : _GenTel) ⊢
    _A  : Set
    _n  : Nat
    _xs : Vec _A _n
@

- Run the type checking action (`createMetasAndTypeCheck`), binding the mentioned generalisable
  variables to the corresponding newly created metavariables. This binding is stored in
  `eGeneralizedVars` and picked up in `Agda.TypeChecking.Rules.Application.inferDef`

@
  (genTel : _GenTel) ⊢ SomeType (_xs genTel)
@

- Compute the telescope of generalised variables (`computeGeneralization`). This is done by taking
  the unconstrained metavariables created by `createGenValues` or created during the type checking
  action and sorting them into a well formed telescope.

@
  {A : Set} {n : Nat} {xs : Vec A n}
@

- Create a record type @GeneralizeTel@ whose fields are the generalised variables and instantiate
  the type of @genTel@ to it (`createGenRecordType`).

@
  record GeneralizeTel : Set₁ where
    constructor mkGeneralizeTel
    field
      A  : Set
      n  : Nat
      xs : Vec A n
@

- Solve the metavariables with their corresponding projections from @genTel@.

@
  _A  := λ genTel → genTel .A
  _n  := λ genTel → genTel .n
  _xs := λ genTel → genTel .xs
@

- Build the unpacking substitution (`unpackSub`) that maps terms in @(genTel : GeneralizeTel)@ to
  terms in the context of the generalised variables by substituting a record value for @genTel@.

@
  {A : Set} {n : Nat} {xs : Vec A n} ⊢ [mkGeneralizeTel A n xs / genTel] : (genTel : GeneralizeTel)
@

- Build the final result by applying the unpacking substitution to the result of the type checking
  action and abstracting over the generalised telescope.

@
  {A : Set} {n : Nat} {xs : Vec A n} → SomeType (_xs (mkGeneralizeTel A n xs)) ==
  {A : Set} {n : Nat} {xs : Vec A n} → SomeType xs
@

- In case of `generalizeType` return the resulting pi type.
- In case of `generalizeTelescope` enter the resulting context, applying the unpacking substitution
  to let bindings (TODO #6916: and also module applications!) created in the telescope, and call the
  continuation.

-}

module Agda.TypeChecking.Generalize
  ( generalizeType
  , generalizeType'
  , generalizeTelescope ) where

import Prelude hiding (null)

import Control.Arrow ((&&&), first)
import Control.Monad.Except ( MonadError(..) )

import qualified Data.IntSet as IntSet
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Map (Map)
import qualified Data.Map as Map
import qualified Data.Map.Strict as MapS
import Data.List (partition, sortBy)
import Data.Monoid

import Agda.Interaction.Options.Base

import Agda.Syntax.Common
import Agda.Syntax.Common.Pretty (prettyShow, singPlural)
import Agda.Syntax.Concrete.Name (LensInScope(..))
import Agda.Syntax.Position
import Agda.Syntax.Info          (MetaNameSuggestion)
import Agda.Syntax.Internal
import Agda.Syntax.Internal.Generic
import Agda.Syntax.Internal.MetaVars
import Agda.Syntax.Scope.Monad (bindVariable, outsideLocalVars)
import Agda.Syntax.Scope.Base (BindingSource(..))
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Conversion
import Agda.TypeChecking.Free
import Agda.TypeChecking.InstanceArguments (postponeInstanceConstraints)
import Agda.TypeChecking.MetaVars
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Warnings

import Agda.Benchmarking (Phase(Typing, Generalize))
import Agda.Utils.Benchmark
import qualified Agda.Utils.BiMap as BiMap
import Agda.Utils.Function
import Agda.Utils.Functor
import Agda.Utils.Impossible
import Agda.Utils.Lens
import Agda.Utils.List (downFrom, hasElem)
import qualified Agda.Utils.List1 as List1
import Agda.Utils.Maybe
import Agda.Utils.Monad
import Agda.Utils.Null
import qualified Agda.Utils.Set1 as Set1
import Agda.Utils.Size
import Agda.Utils.Permutation

-- | Generalize a telescope over a set of generalizable variables.
generalizeTelescope :: Map QName Name -> (forall a. (Telescope -> TCM a) -> TCM a) -> ([Maybe Name] -> Telescope -> TCM a) -> TCM a
generalizeTelescope :: forall a.
Map QName Name
-> (forall a. (Telescope -> TCM a) -> TCM a)
-> ([Maybe Name] -> Telescope -> TCM a)
-> TCM a
generalizeTelescope Map QName Name
vars forall a. (Telescope -> TCM a) -> TCM a
typecheckAction [Maybe Name] -> Telescope -> TCM a
ret | Map QName Name -> Bool
forall k a. Map k a -> Bool
Map.null Map QName Name
vars = (Telescope -> TCM a) -> TCM a
forall a. (Telescope -> TCM a) -> TCM a
typecheckAction ([Maybe Name] -> Telescope -> TCM a
ret [])
generalizeTelescope Map QName Name
vars forall a. (Telescope -> TCM a) -> TCM a
typecheckAction [Maybe Name] -> Telescope -> TCM a
ret = Account (BenchPhase (TCMT IO)) -> TCM a -> TCM a
forall (m :: * -> *) c.
MonadBench m =>
Account (BenchPhase m) -> m c -> m c
billTo [BenchPhase (TCMT IO)
Phase
Typing, BenchPhase (TCMT IO)
Phase
Generalize] (TCM a -> TCM a) -> TCM a -> TCM a
forall a b. (a -> b) -> a -> b
$ (Type -> TCM a) -> TCM a
forall a. (Type -> TCM a) -> TCM a
withGenRecVar ((Type -> TCM a) -> TCM a) -> (Type -> TCM a) -> TCM a
forall a b. (a -> b) -> a -> b
$ \ Type
genRecMeta -> do
  let s :: Set QName
s = Map QName Name -> Set QName
forall k a. Map k a -> Set k
Map.keysSet Map QName Name
vars
  ((cxtNames, tel, letbinds), namedMetas, allmetas) <-
    Set QName
-> TCM ([Name], Telescope, [(Name, LetBinding)])
-> TCM
     (([Name], Telescope, [(Name, LetBinding)]), Map MetaId QName,
      LocalMetaStores)
forall a.
Set QName -> TCM a -> TCM (a, Map MetaId QName, LocalMetaStores)
createMetasAndTypeCheck Set QName
s (TCM ([Name], Telescope, [(Name, LetBinding)])
 -> TCM
      (([Name], Telescope, [(Name, LetBinding)]), Map MetaId QName,
       LocalMetaStores))
-> TCM ([Name], Telescope, [(Name, LetBinding)])
-> TCM
     (([Name], Telescope, [(Name, LetBinding)]), Map MetaId QName,
      LocalMetaStores)
forall a b. (a -> b) -> a -> b
$ (Telescope -> TCM ([Name], Telescope, [(Name, LetBinding)]))
-> TCM ([Name], Telescope, [(Name, LetBinding)])
forall a. (Telescope -> TCM a) -> TCM a
typecheckAction ((Telescope -> TCM ([Name], Telescope, [(Name, LetBinding)]))
 -> TCM ([Name], Telescope, [(Name, LetBinding)]))
-> (Telescope -> TCM ([Name], Telescope, [(Name, LetBinding)]))
-> TCM ([Name], Telescope, [(Name, LetBinding)])
forall a b. (a -> b) -> a -> b
$ \ Telescope
tel -> do
      cxt <- Int -> Context -> Context
forall a. Int -> [a] -> [a]
take (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) (Context -> Context) -> TCMT IO Context -> TCMT IO Context
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TCMT IO Context
forall (m :: * -> *). MonadTCEnv m => m Context
getContext
      lbs <- getLetBindings -- This gives let-bindings valid in the current context
      return (map (fst . unDom) cxt, tel, lbs)

  reportSDoc "tc.generalize.metas" 60 $ vcat
    [ "open metas =" <+> (text . show . fmap ((miNameSuggestion &&& miGeneralizable) . mvInfo)) (openMetas $ allmetas)
    ]
  -- Translate the QName to the corresponding bound variable
  (genTel, genTelNames, sub) <- computeGeneralization genRecMeta namedMetas allmetas

  let boundVar QName
q = Name -> Maybe Name -> Name
forall a. a -> Maybe a -> a
fromMaybe Name
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Name -> Name) -> Maybe Name -> Name
forall a b. (a -> b) -> a -> b
$ QName -> Map QName Name -> Maybe Name
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup QName
q Map QName Name
vars
      genTelVars = ((Maybe QName -> Maybe Name) -> [Maybe QName] -> [Maybe Name]
forall a b. (a -> b) -> [a] -> [b]
map ((Maybe QName -> Maybe Name) -> [Maybe QName] -> [Maybe Name])
-> ((QName -> Name) -> Maybe QName -> Maybe Name)
-> (QName -> Name)
-> [Maybe QName]
-> [Maybe Name]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (QName -> Name) -> Maybe QName -> Maybe Name
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) QName -> Name
boundVar [Maybe QName]
genTelNames

  tel' <- applySubst sub <$> instantiateFull tel

  -- This is not so nice. When changing the context from Γ (r : R) to Γ Δ we need to do this at the
  -- level of contexts (as a Context -> Context function), so we repeat the name logic here. Take
  -- care to preserve the name of named generalized variables.
  let setName c
name f (b, d)
d = (b -> c) -> (b, d) -> (c, d)
forall b c d. (b -> c) -> (b, d) -> (c, d)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (c -> b -> c
forall a b. a -> b -> a
const c
name) ((b, d) -> (c, d)) -> f (b, d) -> f (c, d)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (b, d)
d
      cxtEntry (Maybe Name
mname, Dom' t (b, d)
d) = do
          name <- m Name -> (Name -> m Name) -> Maybe Name -> m Name
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Name -> Name
forall a. LensInScope a => a -> a
setNotInScope (Name -> Name) -> m Name -> m Name
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> b -> m Name
forall a (m :: * -> *).
(FreshName a, MonadFresh NameId m) =>
a -> m Name
forall (m :: * -> *). MonadFresh NameId m => b -> m Name
freshName_ b
s) Name -> m Name
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Name
mname
          return $ setName name d
        where s :: b
s  = (b, d) -> b
forall a b. (a, b) -> a
fst ((b, d) -> b) -> (b, d) -> b
forall a b. (a -> b) -> a -> b
$ Dom' t (b, d) -> (b, d)
forall t e. Dom' t e -> e
unDom Dom' t (b, d)
d
      dropCxt Impossible
err = Substitution -> (Context -> Context) -> m a -> m a
forall a. Substitution -> (Context -> Context) -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Substitution -> (Context -> Context) -> m a -> m a
updateContext (Impossible -> Int -> Substitution
forall a. Impossible -> Int -> Substitution' a
strengthenS Impossible
err Int
1) (Int -> Context -> Context
forall a. Int -> [a] -> [a]
drop Int
1)
  genTelCxt <- dropCxt __IMPOSSIBLE__ $ mapM cxtEntry $ reverse $ zip genTelVars $ telToList genTel

  -- For the explicit module telescope we get the names from the typecheck
  -- action.
  let newTelCxt = (Name -> Dom (String, Type) -> Dom' Term (Name, Type))
-> [Name] -> [Dom (String, Type)] -> Context
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Name -> Dom (String, Type) -> Dom' Term (Name, Type)
forall {f :: * -> *} {c} {b} {d}.
Functor f =>
c -> f (b, d) -> f (c, d)
setName [Name]
cxtNames ([Dom (String, Type)] -> Context)
-> [Dom (String, Type)] -> Context
forall a b. (a -> b) -> a -> b
$ [Dom (String, Type)] -> [Dom (String, Type)]
forall a. [a] -> [a]
reverse ([Dom (String, Type)] -> [Dom (String, Type)])
-> [Dom (String, Type)] -> [Dom (String, Type)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel'

  -- We are in context Γ (r : R) and should call the continuation in context Γ Δ Θρ passing it Δ Θρ
  -- We have
  --   Γ (r : R) ⊢ Θ            Θ = tel
  --   Γ ⊢ Δ                    Δ = genTel
  --   Γ Δ ⊢ ρ : Γ (r : R)      ρ = sub
  --   Γ ⊢ Δ Θρ                 Θρ = tel'
  -- And we shouldn't forget about the let-bindings (#3470)
  --   Γ (r : R) Θ ⊢ letbinds
  --   Γ Δ Θρ      ⊢ letbinds' = letbinds(lift |Θ| ρ)
  -- And modules created in the telescope (#6916)
  --   TODO
  letbinds' <- applySubst (liftS (size tel) sub) <$> instantiateFull letbinds
  let addLet (Name
x, LetBinding Origin
o Term
v Dom Type
dom) = Origin -> Name -> Term -> Dom Type -> m a -> m a
forall a. Origin -> Name -> Term -> Dom Type -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Origin -> Name -> Term -> Dom Type -> m a -> m a
addLetBinding' Origin
o Name
x Term
v Dom Type
dom

  updateContext sub ((genTelCxt ++) . drop 1) $
    updateContext (raiseS (size tel')) (newTelCxt ++) $
      foldr addLet (ret genTelVars $ abstract genTel tel') letbinds'


-- | Generalize a type over a set of (used) generalizable variables.
generalizeType :: Set QName -> TCM Type -> TCM ([Maybe QName], Type)
generalizeType :: Set QName -> TCM Type -> TCM ([Maybe QName], Type)
generalizeType Set QName
s TCM Type
typecheckAction = do
  (ns, t, _) <- Set QName -> TCM (Type, ()) -> TCM ([Maybe QName], Type, ())
forall a.
Set QName -> TCM (Type, a) -> TCM ([Maybe QName], Type, a)
generalizeType' Set QName
s (TCM (Type, ()) -> TCM ([Maybe QName], Type, ()))
-> TCM (Type, ()) -> TCM ([Maybe QName], Type, ())
forall a b. (a -> b) -> a -> b
$ (,()) (Type -> (Type, ())) -> TCM Type -> TCM (Type, ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TCM Type
typecheckAction
  return (ns, t)

-- | Allow returning additional information from the type checking action.
generalizeType' :: Set QName -> TCM (Type, a) -> TCM ([Maybe QName], Type, a)
generalizeType' :: forall a.
Set QName -> TCM (Type, a) -> TCM ([Maybe QName], Type, a)
generalizeType' Set QName
s TCM (Type, a)
typecheckAction = Account (BenchPhase (TCMT IO))
-> TCMT IO ([Maybe QName], Type, a)
-> TCMT IO ([Maybe QName], Type, a)
forall (m :: * -> *) c.
MonadBench m =>
Account (BenchPhase m) -> m c -> m c
billTo [BenchPhase (TCMT IO)
Phase
Typing, BenchPhase (TCMT IO)
Phase
Generalize] (TCMT IO ([Maybe QName], Type, a)
 -> TCMT IO ([Maybe QName], Type, a))
-> TCMT IO ([Maybe QName], Type, a)
-> TCMT IO ([Maybe QName], Type, a)
forall a b. (a -> b) -> a -> b
$ (Type -> TCMT IO ([Maybe QName], Type, a))
-> TCMT IO ([Maybe QName], Type, a)
forall a. (Type -> TCM a) -> TCM a
withGenRecVar ((Type -> TCMT IO ([Maybe QName], Type, a))
 -> TCMT IO ([Maybe QName], Type, a))
-> (Type -> TCMT IO ([Maybe QName], Type, a))
-> TCMT IO ([Maybe QName], Type, a)
forall a b. (a -> b) -> a -> b
$ \ Type
genRecMeta -> do

  ((t, userdata), namedMetas, allmetas) <- Set QName
-> TCM (Type, a)
-> TCM ((Type, a), Map MetaId QName, LocalMetaStores)
forall a.
Set QName -> TCM a -> TCM (a, Map MetaId QName, LocalMetaStores)
createMetasAndTypeCheck Set QName
s TCM (Type, a)
typecheckAction

  reportSDoc "tc.generalize.metas" 60 $ vcat
    [ "open metas =" <+> (text . show . fmap ((miNameSuggestion &&& miGeneralizable) . mvInfo)) (openMetas $ allmetas)
    ]

  (genTel, genTelNames, sub) <- computeGeneralization genRecMeta namedMetas allmetas

  t' <- abstract genTel . applySubst sub <$> instantiateFull t

  reportSDoc "tc.generalize" 40 $ vcat
    [ "generalized"
    , nest 2 $ "t =" <+> escapeContext impossible 1 (prettyTCM t') ]

  return (genTelNames, t', userdata)

-- | Create metas for the generalizable variables and run the type check action.
createMetasAndTypeCheck ::
  Set QName -> TCM a -> TCM (a, Map MetaId QName, LocalMetaStores)
createMetasAndTypeCheck :: forall a.
Set QName -> TCM a -> TCM (a, Map MetaId QName, LocalMetaStores)
createMetasAndTypeCheck Set QName
s TCM a
typecheckAction = do
  ((namedMetas, x), allmetas) <- TCMT IO (Map MetaId QName, a)
-> TCMT IO ((Map MetaId QName, a), LocalMetaStores)
forall (m :: * -> *) a.
ReadTCState m =>
m a -> m (a, LocalMetaStores)
metasCreatedBy (TCMT IO (Map MetaId QName, a)
 -> TCMT IO ((Map MetaId QName, a), LocalMetaStores))
-> TCMT IO (Map MetaId QName, a)
-> TCMT IO ((Map MetaId QName, a), LocalMetaStores)
forall a b. (a -> b) -> a -> b
$ do
    (metamap, genvals) <- Set QName -> TCM (Map MetaId QName, Map QName GeneralizedValue)
createGenValues Set QName
s
    x <- locallyTC eGeneralizedVars (const genvals) typecheckAction
    return (metamap, x)
  return (x, namedMetas, allmetas)

-- | Add a placeholder variable that will be substituted with a record value packing up all the
--   generalized variables.
withGenRecVar :: (Type -> TCM a) -> TCM a
withGenRecVar :: forall a. (Type -> TCM a) -> TCM a
withGenRecVar Type -> TCM a
ret = do
  -- Create a meta type (in Set₀) for the telescope record. It won't
  -- necessarily fit in Set₀, but since it's only used locally the sort
  -- shouldn't matter. Another option would be to put it in Setω, which is a
  -- bit more honest, but this leads to performance problems (see #3306).
  genRecMeta <- Sort -> TCM Type
newTypeMeta (Integer -> Sort
mkType Integer
0)
  addContext (defaultDom ("genTel" :: String, genRecMeta)) $ ret genRecMeta

-- | Compute the generalized telescope from metas created when checking the *thing* (type or telescope) to be
--   generalized. Called in the context extended with the telescope record variable (whose type is
--   the first argument). Returns the telescope of generalized variables and a substitution from
--   this telescope to the current context.
computeGeneralization
  :: Type
       -- ^ The metavariable to be instantiated with record type containing
       --   as fields the variables generalized in the *thing*.
  -> Map MetaId name
       -- ^ Metas created from an occurrence of a @variable@. (The original free variables.)
       --   E.g. if you have
       --   @
       --     variable  l : Level; A : Set l
       --     postulate f : A → A
       --   @
       --   then @A@ would be in this @Map@, but not @l@.
  -> LocalMetaStores
       -- ^ The metas created when type-checking the *thing*.
  -> TCM (Telescope, [Maybe name], Substitution)
       -- ^ The telescope together with binder name (left-to-right order),
       --   and substitution from this telescope to the current context.
computeGeneralization :: forall name.
Type
-> Map MetaId name
-> LocalMetaStores
-> TCM (Telescope, [Maybe name], Substitution)
computeGeneralization Type
genRecMeta Map MetaId name
nameMap LocalMetaStores
allmetas = TCM (Telescope, [Maybe name], Substitution)
-> TCM (Telescope, [Maybe name], Substitution)
forall a. TCM a -> TCM a
postponeInstanceConstraints (TCM (Telescope, [Maybe name], Substitution)
 -> TCM (Telescope, [Maybe name], Substitution))
-> TCM (Telescope, [Maybe name], Substitution)
-> TCM (Telescope, [Maybe name], Substitution)
forall a b. (a -> b) -> a -> b
$ do

  String -> Int -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.generalize" Int
10 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"computing generalization for type" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
genRecMeta

  -- Pair metas with their metaInfo
  let mvs :: [(MetaId, MetaVariable)]
      mvs :: [(MetaId, MetaVariable)]
mvs = Map MetaId MetaVariable -> [(MetaId, MetaVariable)]
forall k a. Map k a -> [(k, a)]
MapS.assocs (LocalMetaStores -> Map MetaId MetaVariable
openMetas LocalMetaStores
allmetas) [(MetaId, MetaVariable)]
-> [(MetaId, MetaVariable)] -> [(MetaId, MetaVariable)]
forall a. [a] -> [a] -> [a]
++
            Map MetaId MetaVariable -> [(MetaId, MetaVariable)]
forall k a. Map k a -> [(k, a)]
MapS.assocs (LocalMetaStores -> Map MetaId MetaVariable
solvedMetas LocalMetaStores
allmetas)

  -- Issue 4727: filter out metavariables that were created before the
  -- current checkpoint, since they are too old to be generalized.
  -- TODO: make metasCreatedBy smarter so it doesn't see pruned
  -- versions of old metas as new metas.
  cp <- Lens' TCEnv CheckpointId -> TCMT IO CheckpointId
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (CheckpointId -> f CheckpointId) -> TCEnv -> f TCEnv
Lens' TCEnv CheckpointId
eCurrentCheckpoint
  let isFreshMeta :: MonadReduce m => MetaVariable -> m Bool
      isFreshMeta MetaVariable
mv = MetaVariable -> (Range -> m Bool) -> m Bool
forall (m :: * -> *) c a b.
(MonadTCEnv m, ReadTCState m, LensClosure c a) =>
c -> (a -> m b) -> m b
enterClosure MetaVariable
mv ((Range -> m Bool) -> m Bool) -> (Range -> m Bool) -> m Bool
forall a b. (a -> b) -> a -> b
$ \ Range
_ -> Maybe Substitution -> Bool
forall a. Maybe a -> Bool
isJust (Maybe Substitution -> Bool) -> m (Maybe Substitution) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> CheckpointId -> m (Maybe Substitution)
forall (tcm :: * -> *).
MonadTCEnv tcm =>
CheckpointId -> tcm (Maybe Substitution)
checkpointSubstitution' CheckpointId
cp
  mvs :: [(MetaId, MetaVariable)] <- filterM (isFreshMeta . snd) mvs

  cs <- (++) <$> useTC stAwakeConstraints
             <*> useTC stSleepingConstraints

  reportSDoc "tc.generalize" 50 $ "current constraints:" <?> vcat (map prettyTCM cs)

  constrainedMetas <- Set.unions <$> mapM (constraintMetas . clValue . theConstraint) cs

  reportSDoc "tc.generalize" 30 $ nest 2 $
    "constrainedMetas     = " <+> prettyList_ (map prettyTCM $ Set.toList constrainedMetas)

  let isConstrained MetaId
x = MetaId -> Set MetaId -> Bool
forall a. Ord a => a -> Set a -> Bool
Set.member MetaId
x Set MetaId
constrainedMetas
      -- Note: Always generalize named metas even if they are constrained. We
      -- freeze them so they won't be instantiated by the constraint, and we do
      -- want the nice error from checking the constraint after generalization.
      -- See #3276.
      isGeneralizable (MetaId
x, MetaVariable
mv) = MetaId -> Map MetaId name -> Bool
forall k a. Ord k => k -> Map k a -> Bool
Map.member MetaId
x Map MetaId name
nameMap Bool -> Bool -> Bool
||
                                Bool -> Bool
not (MetaId -> Bool
isConstrained MetaId
x) Bool -> Bool -> Bool
&& DoGeneralize
NoGeneralize DoGeneralize -> DoGeneralize -> Bool
forall a. Eq a => a -> a -> Bool
/= Arg DoGeneralize -> DoGeneralize
forall e. Arg e -> e
unArg (MetaInfo -> Arg DoGeneralize
miGeneralizable (MetaVariable -> MetaInfo
mvInfo MetaVariable
mv))
      isSort = MetaVariable -> Bool
isSortMeta_ (MetaVariable -> Bool)
-> ((a, MetaVariable) -> MetaVariable) -> (a, MetaVariable) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, MetaVariable) -> MetaVariable
forall a b. (a, b) -> b
snd
      isOpen = MetaInstantiation -> Bool
isOpenMeta (MetaInstantiation -> Bool)
-> ((a, MetaVariable) -> MetaInstantiation)
-> (a, MetaVariable)
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MetaVariable -> MetaInstantiation
mvInstantiation (MetaVariable -> MetaInstantiation)
-> ((a, MetaVariable) -> MetaVariable)
-> (a, MetaVariable)
-> MetaInstantiation
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, MetaVariable) -> MetaVariable
forall a b. (a, b) -> b
snd

  -- Split the generalizable metas in open and closed
  let (generalizable, nongeneralizable)         = partition isGeneralizable mvs
      (generalizableOpen', generalizableClosed) = partition isOpen generalizable
      (openSortMetas, generalizableOpen)        = partition isSort generalizableOpen'
      nongeneralizableOpen                      = ((MetaId, MetaVariable) -> Bool)
-> [(MetaId, MetaVariable)] -> [(MetaId, MetaVariable)]
forall a. (a -> Bool) -> [a] -> [a]
filter (MetaId, MetaVariable) -> Bool
forall {a}. (a, MetaVariable) -> Bool
isOpen [(MetaId, MetaVariable)]
nongeneralizable

  reportSDoc "tc.generalize" 30 $ nest 2 $ vcat
    [ "generalizable        = " <+> prettyList_ (map (prettyTCM . fst) generalizable)
    , "generalizableOpen    = " <+> prettyList_ (map (prettyTCM . fst) generalizableOpen)
    , "openSortMetas        = " <+> prettyList_ (map (prettyTCM . fst) openSortMetas)
    ]

  -- Issue 3301: We can't generalize over sorts
  List1.unlessNull openSortMetas $ \ List1 (MetaId, MetaVariable)
ms ->
    Warning -> TCMT IO ()
forall (m :: * -> *).
(HasCallStack, MonadWarning m) =>
Warning -> m ()
warning (Warning -> TCMT IO ()) -> Warning -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ Set1 MetaId -> Warning
CantGeneralizeOverSorts (Set1 MetaId -> Warning) -> Set1 MetaId -> Warning
forall a b. (a -> b) -> a -> b
$ NonEmpty MetaId -> Set1 MetaId
forall a. Ord a => NonEmpty a -> NESet a
Set1.fromList (NonEmpty MetaId -> Set1 MetaId) -> NonEmpty MetaId -> Set1 MetaId
forall a b. (a -> b) -> a -> b
$ ((MetaId, MetaVariable) -> MetaId)
-> List1 (MetaId, MetaVariable) -> NonEmpty MetaId
forall a b. (a -> b) -> NonEmpty a -> NonEmpty b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (MetaId, MetaVariable) -> MetaId
forall a b. (a, b) -> a
fst List1 (MetaId, MetaVariable)
ms

  -- Any meta in the solution of a generalizable meta should be generalized over (if possible).
  cp <- viewTC eCurrentCheckpoint
  let canGeneralize MetaId
x | MetaId -> Bool
isConstrained MetaId
x = Bool -> TCMT IO Bool
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
      canGeneralize MetaId
x = do
          mv   <- MetaId -> TCMT IO MetaVariable
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
x
          msub <- enterClosure mv $ \ Range
_ ->
                    CheckpointId -> TCMT IO (Maybe Substitution)
forall (tcm :: * -> *).
MonadTCEnv tcm =>
CheckpointId -> tcm (Maybe Substitution)
checkpointSubstitution' CheckpointId
cp
          let sameContext =
                -- We can only generalize if the metavariable takes the context variables of the
                -- current context as arguments. This happens either when the context of the meta
                -- is the same as the current context and there is no pruning, or the meta context
                -- is a weakening but the extra variables have been pruned.
                -- It would be possible to generalize also in the case when some context variables
                -- (other than genTel) have been pruned, but it's hard to construct an example
                -- where this actually happens.
                case (Maybe Substitution
msub, MetaVariable -> Permutation
mvPermutation MetaVariable
mv) of
                  (Just Substitution
IdS, Perm Int
m [Int]
xs)        -> [Int]
xs [Int] -> [Int] -> Bool
forall a. Eq a => a -> a -> Bool
== [Int
0 .. Int
m Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1]
                  (Just (Wk Int
n Substitution
IdS), Perm Int
m [Int]
xs) -> [Int]
xs [Int] -> [Int] -> Bool
forall a. Eq a => a -> a -> Bool
== [Int
0 .. Int
m Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1]
                  (Maybe Substitution, Permutation)
_                            -> Bool
False
          unless sameContext $ reportSDoc "tc.generalize" 20 $ do
            ty <- getMetaType x
            let Perm m xs = mvPermutation mv
            vcat
              [ text "Don't know how to generalize over"
              , nest 2 $ prettyTCM x <+> text ":" <+> prettyTCM ty
              , text "in context"
              , nest 2 $ inTopContext . prettyTCM =<< getContextTelescope
              , text "permutation:" <+> text (show (m, xs))
              , text "subst:" <+> pretty msub ]
          return sameContext

  inherited :: Set MetaId <- Set.unions <$> forM generalizableClosed \ (MetaId
x, MetaVariable
mv) ->
    case MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
mv of
      InstV Instantiation
inst -> do
        parentName <- MetaId -> TCMT IO String
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m String
getMetaNameSuggestion MetaId
x
        metas <- filterM canGeneralize . Set.toList .
                 allMetas Set.singleton =<<
                 instantiateFull (instBody inst)
        unless (null metas) do
          reportSDoc "tc.generalize" 40 $
            hcat ["Inherited metas from ", prettyTCM x, ":"] <?> prettyList_ (map prettyTCM metas)
          -- #4291: Override existing meta name suggestion.
          -- Don't suggest names for explicitly named generalizable metas.
          case filter (`Map.notMember` nameMap) metas of
            -- If we solved the parent with a new meta use the parent name for that.
            [MetaId
m] | MetaV{} <- Instantiation -> Term
instBody Instantiation
inst -> MetaId -> String -> TCMT IO ()
forall (m :: * -> *). MonadMetaSolver m => MetaId -> String -> m ()
setMetaNameSuggestion MetaId
m String
parentName
            -- Otherwise suffix with a number.
            [MetaId]
ms -> (Integer -> MetaId -> TCMT IO ())
-> [Integer] -> [MetaId] -> TCMT IO ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ (\ Integer
i MetaId
m -> MetaId -> String -> TCMT IO ()
forall (m :: * -> *). MonadMetaSolver m => MetaId -> String -> m ()
setMetaNameSuggestion MetaId
m (String
parentName String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"." String -> String -> String
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
i)) [Integer
1..] [MetaId]
ms
        return $ Set.fromList metas
      MetaInstantiation
_ -> TCMT IO (Set MetaId)
forall a. HasCallStack => a
__IMPOSSIBLE__

  let (alsoGeneralize, reallyDontGeneralize) = partition (`Set.member` inherited) $ map fst nongeneralizableOpen
      generalizeOver   = ((MetaId, MetaVariable) -> MetaId)
-> [(MetaId, MetaVariable)] -> [MetaId]
forall a b. (a -> b) -> [a] -> [b]
map (MetaId, MetaVariable) -> MetaId
forall a b. (a, b) -> a
fst [(MetaId, MetaVariable)]
generalizableOpen [MetaId] -> [MetaId] -> [MetaId]
forall a. [a] -> [a] -> [a]
++ [MetaId]
alsoGeneralize
      shouldGeneralize = ([MetaId]
generalizeOver [MetaId] -> MetaId -> Bool
forall a. Ord a => [a] -> a -> Bool
`hasElem`)

  reportSDoc "tc.generalize" 30 $ nest 2 $ vcat
    [ "alsoGeneralize       = " <+> prettyList_ (map prettyTCM alsoGeneralize)
    , "reallyDontGeneralize = " <+> prettyList_ (map prettyTCM reallyDontGeneralize)
    ]

  reportSDoc "tc.generalize" 10 $ "we're generalizing over" <+> prettyList_ (map prettyTCM generalizeOver)

  -- Sort metas in dependency order. Include open metas that we are not
  -- generalizing over, since they will need to be pruned appropriately (see
  -- Issue 3672).
  allSortedMetas <- fromMaybeM (typeError GeneralizeCyclicDependency) $
    dependencySortMetas (generalizeOver ++ reallyDontGeneralize ++ map fst openSortMetas)
  let sortedMetas = (MetaId -> Bool) -> [MetaId] -> [MetaId]
forall a. (a -> Bool) -> [a] -> [a]
filter MetaId -> Bool
shouldGeneralize [MetaId]
allSortedMetas

  let dropCxt Impossible
err = Substitution -> (Context -> Context) -> m a -> m a
forall a. Substitution -> (Context -> Context) -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Substitution -> (Context -> Context) -> m a -> m a
updateContext (Impossible -> Int -> Substitution
forall a. Impossible -> Int -> Substitution' a
strengthenS Impossible
err Int
1) (Int -> Context -> Context
forall a. Int -> [a] -> [a]
drop Int
1)

  -- Create the pre-record type (we don't yet know the types of the fields)
  (genRecName, genRecCon, genRecFields) <- dropCxt __IMPOSSIBLE__ $
      createGenRecordType genRecMeta sortedMetas

  reportSDoc "tc.generalize" 30 $ vcat $
    [ "created genRecordType"
    , nest 2 $ "genRecName   = " <+> prettyTCM genRecName
    , nest 2 $ "genRecCon    = " <+> prettyTCM genRecCon
    , nest 2 $ "genRecFields = " <+> prettyList_ (map prettyTCM genRecFields)
    ]

  -- Solve the generalizable metas. Each generalizable meta is solved by projecting the
  -- corresponding field from the genTel record.
  cxtTel <- getContextTelescope
  let solve MetaId
m QName
field = do
        String -> Int -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.generalize" Int
30 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"solving generalized meta" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
          MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
m TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":=" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM (Int -> Elims -> Term
Var Int
0 [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
field])
        -- m should not be instantiated, but if we don't check constraints
        -- properly it could be (#3666 and #3667). Fail hard instead of
        -- generating bogus types.
        TCMT IO Bool -> TCMT IO () -> TCMT IO ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM (MetaId -> TCMT IO Bool
forall a (m :: * -> *).
(IsInstantiatedMeta a, ReadTCState m) =>
a -> m Bool
forall (m :: * -> *). ReadTCState m => MetaId -> m Bool
isInstantiatedMeta MetaId
m) TCMT IO ()
forall a. HasCallStack => a
__IMPOSSIBLE__
        MetaId -> [Arg String] -> Term -> TCMT IO ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadMetaSolver m) =>
MetaId -> [Arg String] -> Term -> m ()
assignTerm' MetaId
m (Telescope -> [Arg String]
forall a. TelToArgs a => a -> [Arg String]
telToArgs Telescope
cxtTel) (Term -> TCMT IO ()) -> Term -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Term
Var Int
0 [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
field]
  zipWithM_ solve sortedMetas genRecFields

  -- Record the named variables in the telescope
  let telNames = (MetaId -> Maybe name) -> [MetaId] -> [Maybe name]
forall a b. (a -> b) -> [a] -> [b]
map (MetaId -> Map MetaId name -> Maybe name
forall k a. Ord k => k -> Map k a -> Maybe a
`Map.lookup` Map MetaId name
nameMap) [MetaId]
sortedMetas

  -- Build the telescope of generalized metas
  teleTypes <- do
    args <- getContextArgs
    concat <$> forM sortedMetas \ MetaId
m -> do
      mv <- MetaId -> TCMT IO MetaVariable
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
m
      let info =
            (ArgInfo -> ArgInfo
forall a. LensHiding a => a -> a
hideOrKeepInstance (ArgInfo -> ArgInfo) -> ArgInfo -> ArgInfo
forall a b. (a -> b) -> a -> b
$
            Arg DoGeneralize -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo (Arg DoGeneralize -> ArgInfo) -> Arg DoGeneralize -> ArgInfo
forall a b. (a -> b) -> a -> b
$ MetaInfo -> Arg DoGeneralize
miGeneralizable (MetaInfo -> Arg DoGeneralize) -> MetaInfo -> Arg DoGeneralize
forall a b. (a -> b) -> a -> b
$ MetaVariable -> MetaInfo
mvInfo MetaVariable
mv) { argInfoOrigin = Generalization }
          HasType{ jMetaType = t } = mvJudgement mv
          perm = MetaVariable -> Permutation
mvPermutation MetaVariable
mv
      t' <- piApplyM t $ permute (takeP (length args) perm) args
      return [(Arg info $ miNameSuggestion $ mvInfo mv, t')]
  let genTel = ConHead -> [(Arg String, Type)] -> Telescope
buildGeneralizeTel ConHead
genRecCon [(Arg String, Type)]
teleTypes

  reportSDoc "tc.generalize" 40 $ vcat
    [ text "teleTypes =" <+> prettyTCM teleTypes
    , text "genTel    =" <+> prettyTCM genTel
    ]

  -- Now we need to prune the unsolved metas to make sure they respect the new
  -- dependencies (#3672). Also update interaction points to point to pruned metas.
  let inscope (InteractionId
ii, InteractionPoint{ipMeta :: InteractionPoint -> Maybe MetaId
ipMeta = Just MetaId
x})
        | MetaId -> Map MetaId MetaVariable -> Bool
forall k a. Ord k => k -> Map k a -> Bool
MapS.member MetaId
x (LocalMetaStores -> Map MetaId MetaVariable
openMetas LocalMetaStores
allmetas) Bool -> Bool -> Bool
||
          MetaId -> Map MetaId MetaVariable -> Bool
forall k a. Ord k => k -> Map k a -> Bool
MapS.member MetaId
x (LocalMetaStores -> Map MetaId MetaVariable
solvedMetas LocalMetaStores
allmetas) =
          (MetaId, InteractionId) -> Maybe (MetaId, InteractionId)
forall a. a -> Maybe a
Just (MetaId
x, InteractionId
ii)
      inscope (InteractionId, InteractionPoint)
_ = Maybe (MetaId, InteractionId)
forall a. Maybe a
Nothing
  ips <- Map.fromDistinctAscList . mapMaybe inscope . fst . BiMap.toDistinctAscendingLists <$> useTC stInteractionPoints
  pruneUnsolvedMetas genRecName genRecCon genTel genRecFields ips shouldGeneralize allSortedMetas

  -- Fill in the missing details of the telescope record.
  dropCxt __IMPOSSIBLE__ $ fillInGenRecordDetails genRecName genRecCon genRecFields genRecMeta genTel

  -- Now abstract over the telescope. We need to apply the substitution that subsitutes a record
  -- value packing up the generalized variables for the genTel variable.
  let sub = ConHead -> [ArgInfo] -> Int -> Substitution
unpackSub ConHead
genRecCon (((Arg String, Type) -> ArgInfo)
-> [(Arg String, Type)] -> [ArgInfo]
forall a b. (a -> b) -> [a] -> [b]
map (Arg String -> ArgInfo
forall e. Arg e -> ArgInfo
argInfo (Arg String -> ArgInfo)
-> ((Arg String, Type) -> Arg String)
-> (Arg String, Type)
-> ArgInfo
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg String, Type) -> Arg String
forall a b. (a, b) -> a
fst) [(Arg String, Type)]
teleTypes) ([(Arg String, Type)] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [(Arg String, Type)]
teleTypes)

  -- Instantiate all fresh meta-variables to get rid of
  -- __DUMMY_TERM__.
  genTel <- flip instantiateWhen genTel $ \MetaId
m -> do
    mv <- MetaId -> ReduceM (Maybe (Either RemoteMetaVariable MetaVariable))
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe (Either RemoteMetaVariable MetaVariable))
lookupMeta MetaId
m
    case mv of
      Maybe (Either RemoteMetaVariable MetaVariable)
Nothing         -> ReduceM Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
      Just Left{}     -> Bool -> ReduceM Bool
forall a. a -> ReduceM a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
      Just (Right MetaVariable
mv) -> MetaVariable -> ReduceM Bool
forall (m :: * -> *). MonadReduce m => MetaVariable -> m Bool
isFreshMeta MetaVariable
mv

  return (genTel, telNames, sub)

-- | Prune unsolved metas (#3672). The input includes also the generalized metas and is sorted in
-- dependency order. The telescope is the generalized telescope.
pruneUnsolvedMetas :: QName -> ConHead -> Telescope -> [QName] -> Map MetaId InteractionId -> (MetaId -> Bool) -> [MetaId] -> TCM ()
pruneUnsolvedMetas :: QName
-> ConHead
-> Telescope
-> [QName]
-> Map MetaId InteractionId
-> (MetaId -> Bool)
-> [MetaId]
-> TCMT IO ()
pruneUnsolvedMetas QName
genRecName ConHead
genRecCon Telescope
genTel [QName]
genRecFields Map MetaId InteractionId
interactionPoints MetaId -> Bool
isGeneralized [MetaId]
metas
  | (MetaId -> Bool) -> [MetaId] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all MetaId -> Bool
isGeneralized [MetaId]
metas = () -> TCMT IO ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
  | Bool
otherwise               = [Dom (String, Type)] -> Telescope -> [MetaId] -> TCMT IO ()
prune [] Telescope
genTel [MetaId]
metas
  where
    prune :: [Dom (String, Type)] -> Telescope -> [MetaId] -> TCMT IO ()
prune [Dom (String, Type)]
_ Telescope
_ [] = () -> TCMT IO ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    prune [Dom (String, Type)]
cxt Telescope
tel (MetaId
x : [MetaId]
xs) | Bool -> Bool
not (MetaId -> Bool
isGeneralized MetaId
x) = do
      -- If x is a blocked term we shouldn't instantiate it.
      TCMT IO Bool -> TCMT IO () -> TCMT IO ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM (Bool -> Bool
not (Bool -> Bool) -> TCMT IO Bool -> TCMT IO Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> TCMT IO Bool
isBlockedTerm MetaId
x) (TCMT IO () -> TCMT IO ()) -> TCMT IO () -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ do
        x <- if Telescope -> Bool
forall a. Null a => a -> Bool
null Telescope
tel then MetaId -> TCMT IO MetaId
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return MetaId
x else MetaId -> TCMT IO MetaId
prePrune MetaId
x
        pruneMeta (telFromList $ reverse cxt) x
      [Dom (String, Type)] -> Telescope -> [MetaId] -> TCMT IO ()
prune [Dom (String, Type)]
cxt Telescope
tel [MetaId]
xs
    prune [Dom (String, Type)]
cxt (ExtendTel Dom Type
a Abs Telescope
tel) (MetaId
x : [MetaId]
xs) = [Dom (String, Type)] -> Telescope -> [MetaId] -> TCMT IO ()
prune ((Type -> (String, Type)) -> Dom Type -> Dom (String, Type)
forall a b. (a -> b) -> Dom' Term a -> Dom' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (String
x,) Dom Type
a Dom (String, Type) -> [Dom (String, Type)] -> [Dom (String, Type)]
forall a. a -> [a] -> [a]
: [Dom (String, Type)]
cxt) (Abs Telescope -> Telescope
forall a. Abs a -> a
unAbs Abs Telescope
tel) [MetaId]
xs
      where x :: String
x = Abs Telescope -> String
forall a. Abs a -> String
absName Abs Telescope
tel
    prune [Dom (String, Type)]
_ Telescope
_ [MetaId]
_ = TCMT IO ()
forall a. HasCallStack => a
__IMPOSSIBLE__

    sub :: Int -> Substitution
sub = ConHead -> [ArgInfo] -> Int -> Substitution
unpackSub ConHead
genRecCon ([ArgInfo] -> Int -> Substitution)
-> [ArgInfo] -> Int -> Substitution
forall a b. (a -> b) -> a -> b
$ (Dom (String, Type) -> ArgInfo)
-> [Dom (String, Type)] -> [ArgInfo]
forall a b. (a -> b) -> [a] -> [b]
map Dom (String, Type) -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo ([Dom (String, Type)] -> [ArgInfo])
-> [Dom (String, Type)] -> [ArgInfo]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
genTel

    prepruneErrorRefinedContext :: MetaId -> TCM a
prepruneErrorRefinedContext = String -> MetaId -> TCM a
forall a. String -> MetaId -> TCM a
prepruneError (String -> MetaId -> TCM a) -> String -> MetaId -> TCM a
forall a b. (a -> b) -> a -> b
$
      String
"Failed to generalize because some of the generalized variables depend on an " String -> String -> String
forall a. [a] -> [a] -> [a]
++
      String
"unsolved meta created in a refined context (not a simple extension of the context where " String -> String -> String
forall a. [a] -> [a] -> [a]
++
      String
"generalization happens)."

    prepruneErrorCyclicDependencies :: MetaId -> TCM a
prepruneErrorCyclicDependencies = String -> MetaId -> TCM a
forall a. String -> MetaId -> TCM a
prepruneError (String -> MetaId -> TCM a) -> String -> MetaId -> TCM a
forall a b. (a -> b) -> a -> b
$
      String
"Failed to generalize due to circular dependencies between the generalized " String -> String -> String
forall a. [a] -> [a] -> [a]
++
      String
"variables and an unsolved meta."

    prepruneErrorFailedToInstantiate :: MetaId -> TCM a
prepruneErrorFailedToInstantiate = String -> MetaId -> TCM a
forall a. String -> MetaId -> TCM a
prepruneError (String -> MetaId -> TCM a) -> String -> MetaId -> TCM a
forall a b. (a -> b) -> a -> b
$
      String
"Failed to generalize because the generalized variables depend on an unsolved meta " String -> String -> String
forall a. [a] -> [a] -> [a]
++
      String
"that could not be lifted outside the generalization."

    prepruneError :: String -> MetaId -> TCM a
    prepruneError :: forall a. String -> MetaId -> TCM a
prepruneError String
msg MetaId
x = do
      r <- MetaId -> TCMT IO Range
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m Range
getMetaRange MetaId
x
      genericDocError =<<
        (fwords (msg ++ " The problematic unsolved meta is") $$
                 nest 2 (prettyTCM (MetaV x []) <+> "at" <+> pretty r)
        )

    -- If one of the fields depend on this meta, we have to make sure that this meta doesn't depend
    -- on any variables introduced after the genRec. See test/Fail/Issue3672b.agda for a test case.
    prePrune :: MetaId -> TCMT IO MetaId
prePrune MetaId
x = do
      cp <- Lens' TCEnv CheckpointId -> TCMT IO CheckpointId
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (CheckpointId -> f CheckpointId) -> TCEnv -> f TCEnv
Lens' TCEnv CheckpointId
eCurrentCheckpoint
      mv <- lookupLocalMeta x
      (i, _A) <- enterClosure mv $ \ Range
_ -> do
        δ <- CheckpointId -> TCMT IO Substitution
forall (tcm :: * -> *).
MonadTCEnv tcm =>
CheckpointId -> tcm Substitution
checkpointSubstitution CheckpointId
cp
        _A <- case mvJudgement mv of
                IsSort{}  -> Maybe Type -> TCMT IO (Maybe Type)
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Type
forall a. Maybe a
Nothing
                HasType{} -> Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> TCM Type -> TCMT IO (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> TCM Type
forall (m :: * -> *).
(HasBuiltins m, HasCallStack, MonadDebug m, MonadReduce m,
 MonadTCEnv m, ReadTCState m) =>
MetaId -> m Type
getMetaTypeInContext MetaId
x
        case δ of
          Wk Int
n Substitution
IdS -> (Int, Maybe Type) -> TCMT IO (Int, Maybe Type)
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
n, Maybe Type
_A)
          Substitution
IdS      -> (Int, Maybe Type) -> TCMT IO (Int, Maybe Type)
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
0, Maybe Type
_A)
          Substitution
_        -> MetaId -> TCMT IO (Int, Maybe Type)
forall {a}. MetaId -> TCM a
prepruneErrorRefinedContext MetaId
x
      if i == 0 then return x else do
        reportSDoc "tc.generalize.prune.pre" 40 $ vcat
          [ "prepruning"
          , nest 2 $ pretty x <+> ":" <+> pretty (jMetaType $ mvJudgement mv)
          , nest 2 $ "|Δ| =" <+> pshow i ]

        -- We have
        --   Γ (r : GenRec)            current context
        --   Γ (r : GenRec) Δ ⊢ x : A  with |Δ| = i
        -- and we need to get rid of the dependency on Δ.

        -- We can only do this if A does not depend on Δ, so check this first.
        case IntSet.minView (allFreeVars _A) of
          Just (Int
j, IntSet
_) | Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
i -> MetaId -> TCMT IO ()
forall {a}. MetaId -> TCM a
prepruneErrorCyclicDependencies MetaId
x
          Maybe (Int, IntSet)
_                   -> () -> TCMT IO ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

        -- If it doesn't we can strenghten it to the current context (this is done by
        -- newMetaFromOld).
        --   Γ (r : GenRec) ⊢ ρ : Γ (r : GenRec) Δ
        let ρ  = Impossible -> Int -> Substitution
forall a. Impossible -> Int -> Substitution' a
strengthenS Impossible
HasCallStack => Impossible
impossible Int
i
            ρ' = Int -> Substitution
forall a. Int -> Substitution' a
raiseS Int
i

        (y, u) <- newMetaFromOld mv ρ _A

        let uρ' = Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
ρ' Term
u

        reportSDoc "tc.generalize.prune.pre" 40 $ nest 2 $ vcat
          [ "u    =" <+> pretty u
          , "uρ⁻¹ =" <+> pretty uρ' ]

        -- To solve it we enter the context of x again
        enterClosure mv $ \ Range
_ -> do
          -- v is x applied to the context variables
          v <- case Maybe Type
_A of
                 Maybe Type
Nothing -> Sort -> Term
Sort (Sort -> Term) -> (Args -> Sort) -> Args -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x (Elims -> Sort) -> (Args -> Elims) -> Args -> Sort
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Args -> Term) -> TCMT IO Args -> TCMT IO Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaVariable -> TCMT IO Args
forall (m :: * -> *). MonadTCEnv m => MetaVariable -> m Args
getMetaContextArgs MetaVariable
mv
                 Just{}  -> MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> (Args -> Elims) -> Args -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Args -> Term) -> TCMT IO Args -> TCMT IO Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaVariable -> TCMT IO Args
forall (m :: * -> *). MonadTCEnv m => MetaVariable -> m Args
getMetaContextArgs MetaVariable
mv
          noConstraints (doPrune x mv _A v uρ') `catchError` \ TCErr
_ -> MetaId -> TCMT IO ()
forall {a}. MetaId -> TCM a
prepruneErrorFailedToInstantiate MetaId
x
          setInteractionPoint x y
          return y

    pruneMeta :: Telescope -> MetaId -> TCMT IO ()
pruneMeta Telescope
 MetaId
x = do
      cp <- Lens' TCEnv CheckpointId -> TCMT IO CheckpointId
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (CheckpointId -> f CheckpointId) -> TCEnv -> f TCEnv
Lens' TCEnv CheckpointId
eCurrentCheckpoint
      mv <- lookupLocalMeta x
      -- The reason we are doing all this inside the closure of x is so that if x is an interaction
      -- meta we get the right context for the pruned interaction meta.
      enterClosure mv $ \ Range
_ ->
        -- If we can't find the generalized record, it's already been pruned and we don't have to do
        -- anything.
        TCMT IO (Maybe Int) -> (Int -> TCMT IO ()) -> TCMT IO ()
forall (m :: * -> *) a.
Monad m =>
m (Maybe a) -> (a -> m ()) -> m ()
whenJustM (MetaVariable -> TCMT IO (Maybe Int)
findGenRec MetaVariable
mv) ((Int -> TCMT IO ()) -> TCMT IO ())
-> (Int -> TCMT IO ()) -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ \ Int
i -> do

        String -> Int -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.generalize.prune" Int
30 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
          [ TCMT IO Doc
"pruning"
          , Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc -> TCMT IO Doc
forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Judgement MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Judgement MetaId -> m Doc
prettyTCM (MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv)
          , Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"GenRecTel is var" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Int -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Int
i ]

        _ΓrΔ <- TCMT IO Telescope
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Telescope
getContextTelescope
        let (, ) = (telFromList gs, telFromList ds)
              where (gs, _ : ds) = splitAt (size _ΓrΔ - i - 1) (telToList _ΓrΔ)

        -- Get the type of x. By doing this here we let the checkpoint machinery sort out the
        _A <- case mvJudgement mv of
                IsSort{}  -> Maybe Type -> TCMT IO (Maybe Type)
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Type
forall a. Maybe a
Nothing
                HasType{} -> Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> TCM Type -> TCMT IO (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> TCM Type
forall (m :: * -> *).
(HasBuiltins m, HasCallStack, MonadDebug m, MonadReduce m,
 MonadTCEnv m, ReadTCState m) =>
MetaId -> m Type
getMetaTypeInContext MetaId
x

        -- We have
        --   Γ  (r : GenTel) Δ         current context
        --   Γ₀ (r : GenTel)           top context
        --   Γ₀ ⊢ Θ                    prefix of the generalized telescope currently in scope
        --   Γ (r : GenTel) Δ ⊢ x : A  the meta to prune

        -- Get the substitution from the point of generalization to the current context. This always
        -- succeeds since if the meta depends on GenTel it must have been created inside the
        -- generalization:
        --   Γ (r : GenTel) Δ ⊢ δ : Γ₀ (r : GenTel)
        δ <- checkpointSubstitution cp

        -- v is x applied to the context variables
        v <- case _A of
               Maybe Type
Nothing -> Sort -> Term
Sort (Sort -> Term) -> (Args -> Sort) -> Args -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x (Elims -> Sort) -> (Args -> Elims) -> Args -> Sort
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Args -> Term) -> TCMT IO Args -> TCMT IO Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaVariable -> TCMT IO Args
forall (m :: * -> *). MonadTCEnv m => MetaVariable -> m Args
getMetaContextArgs MetaVariable
mv
               Just{}  -> MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> (Args -> Elims) -> Args -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Args -> Term) -> TCMT IO Args -> TCMT IO Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaVariable -> TCMT IO Args
forall (m :: * -> *). MonadTCEnv m => MetaVariable -> m Args
getMetaContextArgs MetaVariable
mv

        -- Now ultimately we want to create the fresh meta in the context
        --   Γ Θγ Δσ where Γ    ⊢ γ : Γ₀
        --                 Γ Θγ ⊢ σ : Γ (r : GenTel)
        -- σ is the unpacking substitution (which is polymorphic in Γ)
        let σ   = Int -> Substitution
sub (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
)
            --    Γ <- Γ (r : GenTel) Δ <- Γ₀ (r : GenTel) <- Γ₀
            γ   = Impossible -> Int -> Substitution
forall a. Impossible -> Int -> Substitution' a
strengthenS Impossible
HasCallStack => Impossible
impossible (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Substitution -> Substitution -> Substitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` Substitution
δ Substitution -> Substitution -> Substitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` Int -> Substitution
forall a. Int -> Substitution' a
raiseS Int
1
            _Θγ = Substitution' (SubstArg Telescope) -> Telescope -> Telescope
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Telescope)
γ Telescope

            _Δσ = Substitution' (SubstArg Telescope) -> Telescope -> Telescope
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Telescope)
σ Telescope


        -- The substitution into the new context is simply lifting σ over Δ:
        --   Γ Θγ Δσ ⊢ lift i σ : Γ (r : GenTel) Δ
        let ρ  = Int -> Substitution -> Substitution
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
i Substitution
σ
            -- We also need ρ⁻¹, which is a lot easier to construct.
            ρ' = Int -> Substitution -> Substitution
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
i (Substitution -> Substitution) -> Substitution -> Substitution
forall a b. (a -> b) -> a -> b
$ [ Int -> Elims -> Term
Var Int
0 [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
fld] | QName
fld <- [QName] -> [QName]
forall a. [a] -> [a]
reverse ([QName] -> [QName]) -> [QName] -> [QName]
forall a b. (a -> b) -> a -> b
$ Int -> [QName] -> [QName]
forall a. Int -> [a] -> [a]
take (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
) ([QName] -> [QName]) -> [QName] -> [QName]
forall a b. (a -> b) -> a -> b
$ [QName]
genRecFields ] [Term] -> Substitution -> Substitution
forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# Int -> Substitution
forall a. Int -> Substitution' a
raiseS Int
1

        reportSDoc "tc.generalize.prune" 30 $ nest 2 $ vcat
          [ "Γ   =" <+> pretty 
          , "Θ   =" <+> pretty 
          , "Δ   =" <+> pretty 
          , "σ   =" <+> pretty σ
          , "γ   =" <+> pretty γ
          , "δ   =" <+> pretty δ
          , "ρ   =" <+> pretty ρ
          , "ρ⁻¹ =" <+> pretty ρ'
          , "Θγ  =" <+> pretty _Θγ
          , "Δσ  =" <+> pretty _Δσ
          , "_A  =" <+> pretty _A
          ]

        -- When updating the context we also need to pick names for the variables. Get them from the
        -- current context and generate fresh ones for the generalized variables in Θ.
        (newCxt, ) <- do
          (, _ : ) <- splitAt i <$> getContext
          let setName = ((String, t) -> TCMT IO (Name, t))
-> Dom' Term (String, t) -> TCMT IO (Dom' Term (Name, t))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' Term a -> f (Dom' Term b)
traverse (((String, t) -> TCMT IO (Name, t))
 -> Dom' Term (String, t) -> TCMT IO (Dom' Term (Name, t)))
-> ((String, t) -> TCMT IO (Name, t))
-> Dom' Term (String, t)
-> TCMT IO (Dom' Term (Name, t))
forall a b. (a -> b) -> a -> b
$ \ (String
s, t
ty) -> (,t
ty) (Name -> (Name, t)) -> TCMT IO Name -> TCMT IO (Name, t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> String -> TCMT IO Name
forall a (m :: * -> *).
(FreshName a, MonadFresh NameId m) =>
a -> m Name
forall (m :: * -> *). MonadFresh NameId m => String -> m Name
freshName_ String
s
           <- mapM setName $ reverse $ telToList _Θγ
          let rΔσ = (Name -> Dom (String, Type) -> Dom' Term (Name, Type))
-> [Name] -> [Dom (String, Type)] -> Context
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\ Name
name Dom (String, Type)
dom -> (String -> Name) -> (String, Type) -> (Name, Type)
forall b c d. (b -> c) -> (b, d) -> (c, d)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (Name -> String -> Name
forall a b. a -> b -> a
const Name
name) ((String, Type) -> (Name, Type))
-> Dom (String, Type) -> Dom' Term (Name, Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom (String, Type)
dom)
                            ((Dom' Term (Name, Type) -> Name) -> Context -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map ((Name, Type) -> Name
forall a b. (a, b) -> a
fst ((Name, Type) -> Name)
-> (Dom' Term (Name, Type) -> (Name, Type))
-> Dom' Term (Name, Type)
-> Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom' Term (Name, Type) -> (Name, Type)
forall t e. Dom' t e -> e
unDom) Context
)
                            ([Dom (String, Type)] -> [Dom (String, Type)]
forall a. [a] -> [a]
reverse ([Dom (String, Type)] -> [Dom (String, Type)])
-> [Dom (String, Type)] -> [Dom (String, Type)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
_Δσ)
          return (rΔσ ++  ++ , )

        -- Now we can enter the new context and create our meta variable.
        (y, u) <- updateContext ρ (const newCxt) $ localScope $ do

          -- First, we add the named variables to the scope, to allow
          -- them to be used in holes (#3341). These should go outside Δ (#3735).
          outsideLocalVars i $ addNamedVariablesToScope 

          -- Now we can create the new meta
          newMetaFromOld mv ρ _A

        -- Finally we solve x := yρ⁻¹. The reason for solving it this way instead of xρ := y is that
        -- ρ contains dummy terms for the variables that are not in scope.
        -- If x has been instantiated by some constraint unblocked by previous pruning or
        -- generalization, use equalTerm instead of assigning to x. If this fails (see
        -- test/Fail/Issue3655b.agda for a test case), we need to give an error. This can happen if
        -- there are dependencies between generalized variables that are hidden by constraints and
        -- the dependency sorting happens to pick the wrong order. For instance, if we have
        --    α : Nat   (unsolved meta)
        --    t : F α   (named variable)
        --    n : Nat   (named variable)
        -- and a constraint F α == F n, where F does some pattern matching preventing the constraint
        -- to be solved when n is still a meta. If t appears before n in the type these will be sorted
        -- as α, t, n, but we will solve α := n before we get to the pruning here. It's good that we
        -- solve first though, because that means we can give a more informative error message than
        -- the "Cannot instantiate..." we would otherwise get.
        let uρ' = Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
ρ' Term
u
        reportSDoc "tc.generalize.prune" 80 $ vcat
          [ "solving"
          , nest 2 $ sep [ pretty v   <+> "=="
                         , pretty uρ' <+> ":"
                         , pretty _A ] ]
        noConstraints (doPrune x mv _A v uρ') `catchError` niceError x v

        reportSDoc "tc.generalize.prune" 80 $ vcat
          [ "solved"
          , nest 2 $ "v    =" <+> (pretty =<< instantiateFull v)
          , nest 2 $ "uρ⁻¹ =" <+> (pretty =<< instantiateFull uρ') ]

        setInteractionPoint x y

    findGenRec :: MetaVariable -> TCM (Maybe Int)
    findGenRec :: MetaVariable -> TCMT IO (Maybe Int)
findGenRec MetaVariable
mv = do
      cxt <- Context -> TCMT IO Context
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull (Context -> TCMT IO Context) -> TCMT IO Context -> TCMT IO Context
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< TCMT IO Context
forall (m :: * -> *). MonadTCEnv m => m Context
getContext
      let n         = Context -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Context
cxt
          notPruned = [Int] -> IntSet
IntSet.fromList ([Int] -> IntSet) -> [Int] -> IntSet
forall a b. (a -> b) -> a -> b
$
                      Permutation -> [Int] -> [Int]
forall a. Permutation -> [a] -> [a]
permute (Int -> Permutation -> Permutation
takeP Int
n (Permutation -> Permutation) -> Permutation -> Permutation
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Permutation
mvPermutation MetaVariable
mv) ([Int] -> [Int]) -> [Int] -> [Int]
forall a b. (a -> b) -> a -> b
$
                      Int -> [Int]
forall a. Integral a => a -> [a]
downFrom Int
n
      case [ i
           | (i, Dom{unDom = (_, El _ (Def q _))}) <- zip [0..] cxt
           , q == genRecName
           , i `IntSet.member` notPruned
           ] of
        []    -> Maybe Int -> TCMT IO (Maybe Int)
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Int
forall a. Maybe a
Nothing
        Int
_:Int
_:[Int]
_ -> TCMT IO (Maybe Int)
forall a. HasCallStack => a
__IMPOSSIBLE__
        [Int
i]   -> Maybe Int -> TCMT IO (Maybe Int)
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Maybe Int
forall a. a -> Maybe a
Just Int
i)
                                                    -- Nothing if sort meta
    newMetaFromOld :: MetaVariable -> Substitution -> Maybe Type -> TCM (MetaId, Term)
    newMetaFromOld :: MetaVariable -> Substitution -> Maybe Type -> TCM (MetaId, Term)
newMetaFromOld MetaVariable
mv Substitution
ρ Maybe Type
mA = MetaVariable -> TCM (MetaId, Term) -> TCM (MetaId, Term)
forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange MetaVariable
mv (TCM (MetaId, Term) -> TCM (MetaId, Term))
-> TCM (MetaId, Term) -> TCM (MetaId, Term)
forall a b. (a -> b) -> a -> b
$
      case Maybe Type
mA of
        Maybe Type
Nothing -> do
          s@(MetaS y _) <- TCMT IO Sort
forall (m :: * -> *). MonadMetaSolver m => m Sort
newSortMeta
          return (y, Sort s)
        Just Type
_A -> do
          let _Aρ :: Type
_Aρ = Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Type)
ρ Type
_A
          RunMetaOccursCheck
-> String -> Comparison -> Type -> TCM (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck
-> String -> Comparison -> Type -> m (MetaId, Term)
newNamedValueMeta RunMetaOccursCheck
DontRunMetaOccursCheck
                            (MetaInfo -> String
miNameSuggestion (MetaInfo -> String) -> MetaInfo -> String
forall a b. (a -> b) -> a -> b
$ MetaVariable -> MetaInfo
mvInfo MetaVariable
mv)
                            (Judgement MetaId -> Comparison
forall a. Judgement a -> Comparison
jComparison (Judgement MetaId -> Comparison) -> Judgement MetaId -> Comparison
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv) Type
_Aρ

    -- If x is a hole, update the hole to point to y instead.
    setInteractionPoint :: MetaId -> MetaId -> TCMT IO ()
setInteractionPoint MetaId
x MetaId
y =
      Maybe InteractionId -> (InteractionId -> TCMT IO ()) -> TCMT IO ()
forall (m :: * -> *) a. Monad m => Maybe a -> (a -> m ()) -> m ()
whenJust (MetaId -> Map MetaId InteractionId -> Maybe InteractionId
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup MetaId
x Map MetaId InteractionId
interactionPoints) (InteractionId -> MetaId -> TCMT IO ()
forall (m :: * -> *).
MonadInteractionPoints m =>
InteractionId -> MetaId -> m ()
`connectInteractionPoint` MetaId
y)

    doPrune :: MetaId -> MetaVariable -> Maybe Type -> Term -> Term -> TCM ()
    doPrune :: MetaId -> MetaVariable -> Maybe Type -> Term -> Term -> TCMT IO ()
doPrune MetaId
x MetaVariable
mv Maybe Type
mt Term
v Term
u =
      case Maybe Type
mt of
        Maybe Type
_ | Bool
isOpen -> CompareDirection
-> MetaId -> Args -> Term -> CompareAs -> TCMT IO ()
assign CompareDirection
DirEq MetaId
x (Term -> Args
getArgs Term
v) Term
u (CompareAs -> TCMT IO ()) -> CompareAs -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ CompareAs -> (Type -> CompareAs) -> Maybe Type -> CompareAs
forall b a. b -> (a -> b) -> Maybe a -> b
maybe CompareAs
AsTypes Type -> CompareAs
AsTermsOf Maybe Type
mt
        Maybe Type
Nothing    -> Sort -> Sort -> TCMT IO ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort (Term -> Sort
unwrapSort Term
v) (Term -> Sort
unwrapSort Term
u)
        Just Type
t     -> Type -> Term -> Term -> TCMT IO ()
forall (m :: * -> *).
MonadConversion m =>
Type -> Term -> Term -> m ()
equalTerm Type
t Term
v Term
u
      where
        isOpen :: Bool
isOpen = MetaInstantiation -> Bool
isOpenMeta (MetaInstantiation -> Bool) -> MetaInstantiation -> Bool
forall a b. (a -> b) -> a -> b
$ MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
mv
        getArgs :: Term -> Args
getArgs = \case
            Sort (MetaS MetaId
_ Elims
es) -> Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
            MetaV MetaId
_ Elims
es        -> Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
            Term
_                 -> Args
forall a. HasCallStack => a
__IMPOSSIBLE__
        unwrapSort :: Term -> Sort
unwrapSort (Sort Sort
s) = Sort
s
        unwrapSort Term
_        = Sort
forall a. HasCallStack => a
__IMPOSSIBLE__

    niceError :: MetaId -> Term -> TCErr -> TCMT IO ()
niceError MetaId
x Term
u TCErr
err = do
      u <- Term -> TCMT IO Term
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull Term
u
      let err' = case TCErr
err of
                   TypeError{tcErrClosErr :: TCErr -> Closure TypeError
tcErrClosErr = Closure TypeError
cl} ->
                     -- Remove the 'when' part from the error since it's most like the same as ours.
                     TCErr
err{ tcErrClosErr = cl{ clEnv = (clEnv cl) { envCall = Nothing } } }
                   TCErr
_ -> TCErr
err
          telList = Telescope -> [Dom (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
genTel
          names   = (Dom (String, Type) -> String) -> [Dom (String, Type)] -> [String]
forall a b. (a -> b) -> [a] -> [b]
map ((String, Type) -> String
forall a b. (a, b) -> a
fst ((String, Type) -> String)
-> (Dom (String, Type) -> (String, Type))
-> Dom (String, Type)
-> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (String, Type) -> (String, Type)
forall t e. Dom' t e -> e
unDom) [Dom (String, Type)]
telList
          late    = (Dom (String, Type) -> String) -> [Dom (String, Type)] -> [String]
forall a b. (a -> b) -> [a] -> [b]
map ((String, Type) -> String
forall a b. (a, b) -> a
fst ((String, Type) -> String)
-> (Dom (String, Type) -> (String, Type))
-> Dom (String, Type)
-> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (String, Type) -> (String, Type)
forall t e. Dom' t e -> e
unDom) ([Dom (String, Type)] -> [String])
-> [Dom (String, Type)] -> [String]
forall a b. (a -> b) -> a -> b
$ (Dom (String, Type) -> Bool)
-> [Dom (String, Type)] -> [Dom (String, Type)]
forall a. (a -> Bool) -> [a] -> [a]
filter (Any -> Bool
getAny (Any -> Bool)
-> (Dom (String, Type) -> Any) -> Dom (String, Type) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (MetaId -> Any) -> Dom (String, Type) -> Any
forall m. Monoid m => (MetaId -> m) -> Dom (String, Type) -> m
forall t m. (AllMetas t, Monoid m) => (MetaId -> m) -> t -> m
allMetas (Bool -> Any
Any (Bool -> Any) -> (MetaId -> Bool) -> MetaId -> Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
x))) [Dom (String, Type)]
telList
          projs (Proj ProjOrigin
_ QName
q)
            | QName
q QName -> [QName] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [QName]
genRecFields
            , Just String
y <- QName -> Maybe String
getGeneralizedFieldName QName
q
            = String -> Set String
forall a. a -> Set a
Set.singleton String
y
          projs Elim' Term
_ = Set String
forall a. Set a
Set.empty
          early = ((Term -> Set String) -> Term -> Set String)
-> Term -> (Term -> Set String) -> Set String
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Term -> Set String) -> Term -> Set String
forall m. Monoid m => (Term -> m) -> Term -> m
forall a m. (TermLike a, Monoid m) => (Term -> m) -> a -> m
foldTerm Term
u \case
                  Var Int
_ Elims
es   -> (Elim' Term -> Set String) -> Elims -> Set String
forall m a. Monoid m => (a -> m) -> [a] -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Elim' Term -> Set String
projs Elims
es
                  Def QName
_ Elims
es   -> (Elim' Term -> Set String) -> Elims -> Set String
forall m a. Monoid m => (a -> m) -> [a] -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Elim' Term -> Set String
projs Elims
es
                  MetaV MetaId
_ Elims
es -> (Elim' Term -> Set String) -> Elims -> Set String
forall m a. Monoid m => (a -> m) -> [a] -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Elim' Term -> Set String
projs Elims
es
                  Term
_          -> Set String
forall a. Set a
Set.empty
          commas []       = String
forall a. HasCallStack => a
__IMPOSSIBLE__
          commas [String
x]      = String
x
          commas [String
x, String
y]   = String
x String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
", and " String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
y
          commas (String
x : [String]
xs) = String
x String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
", " String -> String -> String
forall a. [a] -> [a] -> [a]
++ [String] -> String
commas [String]
xs
          cause = String
"There were unsolved constraints that obscured the " String -> String -> String
forall a. [a] -> [a] -> [a]
++
                  String
"dependencies between the generalized variables."
          solution = String
"The most reliable solution is to provide enough information to make the dependencies " String -> String -> String
forall a. [a] -> [a] -> [a]
++
                     String
"clear, but simply mentioning the variables in the right order should also work."
          order = [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
fwords String
"Dependency analysis suggested this (likely incorrect) order:",
                        Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
fwords ([String] -> String
unwords [String]
names) ]
          guess = [String] -> String
unwords
            [ String
"After constraint solving it looks like", [String] -> String
commas [String]
late
            , String
"actually"
            , [String]
-> (String -> String) -> (String -> String) -> String -> String
forall a c. Sized a => a -> c -> c -> c
singPlural [String]
late (String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
"s") String -> String
forall a. a -> a
id String
"depend"  -- NB: this is a singular "s"
            , String
"on", [String] -> String
commas ([String] -> String) -> [String] -> String
forall a b. (a -> b) -> a -> b
$ Set String -> [String]
forall a. Set a -> [a]
Set.toList Set String
early
            ]
      genericDocError =<< vcat
        [ fwords $ "Variable generalization failed."
        , nest 2 $ sep ["- Probable cause", nest 4 $ fwords cause]
        , nest 2 $ sep ["- Suggestion", nest 4 $ fwords solution]
        , nest 2 $ sep $ ["- Further information"
                         , nest 2 $ "-" <+> order ] ++
                         [ nest 2 $ "-" <+> fwords guess | not (null late), not (null early) ] ++
                         [ nest 2 $ "-" <+> sep [ fwords "The dependency error is", prettyTCM err' ] ]
        ]

    addNamedVariablesToScope :: t (Dom' t (Name, b)) -> TCMT IO ()
addNamedVariablesToScope t (Dom' t (Name, b))
cxt =
      t (Dom' t (Name, b))
-> (Dom' t (Name, b) -> TCMT IO ()) -> TCMT IO ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ t (Dom' t (Name, b))
cxt ((Dom' t (Name, b) -> TCMT IO ()) -> TCMT IO ())
-> (Dom' t (Name, b) -> TCMT IO ()) -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ \ Dom{ unDom :: forall t e. Dom' t e -> e
unDom = (Name
x, b
_) } -> do
        -- Recognize named variables by lack of '.' (TODO: hacky!)
        String -> Int -> String -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> String -> m ()
reportSLn String
"tc.generalize.eta.scope" Int
40 (String -> TCMT IO ()) -> String -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ String
"Adding (or not) " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name -> String
forall a. Pretty a => a -> String
prettyShow (Name -> Name
nameConcrete Name
x) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" to the scope"
        Bool -> TCMT IO () -> TCMT IO ()
forall b (m :: * -> *). (IsBool b, Monad m) => b -> m () -> m ()
when (Char
'.' Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` Name -> String
forall a. Pretty a => a -> String
prettyShow (Name -> Name
nameConcrete Name
x)) (TCMT IO () -> TCMT IO ()) -> TCMT IO () -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$ do
          String -> Int -> String -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> String -> m ()
reportSLn String
"tc.generalize.eta.scope" Int
40 String
"  (added)"
          BindingSource -> Name -> Name -> TCMT IO ()
bindVariable BindingSource
LambdaBound (Name -> Name
nameConcrete Name
x) Name
x

-- | Create a substition from a context where the i first record fields are variables to a context
--   where you have a single variable of the record type. Packs up the field variables in a record
--   constructor and pads with __DUMMY_TERM__s for the missing fields. Important that you apply this
--   to terms that only projects the defined fields from the record variable.
--   Used with partial record values when building the telescope of generalized variables in which
--   case we have done the dependency analysis that guarantees it is safe.
unpackSub :: ConHead -> [ArgInfo] -> Int -> Substitution
unpackSub :: ConHead -> [ArgInfo] -> Int -> Substitution
unpackSub ConHead
con [ArgInfo]
infos Int
i = Substitution
recSub
  where
    ar :: Int
ar = [ArgInfo] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [ArgInfo]
infos
    appl :: ArgInfo -> a -> Elim' a
appl ArgInfo
info a
v = Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply (ArgInfo -> a -> Arg a
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info a
v)
    recVal :: Term
recVal = ConHead -> ConInfo -> Elims -> Term
Con ConHead
con ConInfo
ConOSystem (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (ArgInfo -> Term -> Elim' Term) -> [ArgInfo] -> [Term] -> Elims
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith ArgInfo -> Term -> Elim' Term
forall {a}. ArgInfo -> a -> Elim' a
appl [ArgInfo]
infos ([Term] -> Elims) -> [Term] -> Elims
forall a b. (a -> b) -> a -> b
$ [Int -> Term
var Int
j | Int
j <- [Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1, Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
2..Int
0]] [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++ Int -> Term -> [Term]
forall a. Int -> a -> [a]
replicate (Int
ar Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) Term
HasCallStack => Term
__DUMMY_TERM__

    -- want: Γ Δᵢ ⊢ recSub i : Γ (r : R)
    -- have:
    -- Γ Δᵢ ⊢ recVal i :# σ : Θ (r : R),  if Γ Δᵢ ⊢ σ : Θ
    -- Γ Δᵢ ⊢ WkS i IdS : Γ
    recSub :: Substitution
recSub = Term
recVal Term -> Substitution -> Substitution
forall a. a -> Substitution' a -> Substitution' a
:# Int -> Substitution -> Substitution
forall a. Int -> Substitution' a -> Substitution' a
Wk Int
i Substitution
forall a. Substitution' a
IdS

-- | Takes the list of types
--    A₁ []
--    A₂ [r.f₁]
--    A₃ [r.f₂, r.f₃]
--    ...
--   And builds the telescope
--    (x₁ : A₁ [ r := c _       .. _ ])
--    (x₂ : A₂ [ r := c x₁ _    .. _ ])
--    (x₃ : A₃ [ r := c x₁ x₂ _ .. _ ])
--    ...
buildGeneralizeTel :: ConHead -> [(Arg MetaNameSuggestion, Type)] -> Telescope
buildGeneralizeTel :: ConHead -> [(Arg String, Type)] -> Telescope
buildGeneralizeTel ConHead
con [(Arg String, Type)]
xs = Int -> [(Arg String, Type)] -> Telescope
go Int
0 [(Arg String, Type)]
xs
  where
    infos :: [ArgInfo]
infos = ((Arg String, Type) -> ArgInfo)
-> [(Arg String, Type)] -> [ArgInfo]
forall a b. (a -> b) -> [a] -> [b]
map (Arg String -> ArgInfo
forall e. Arg e -> ArgInfo
argInfo (Arg String -> ArgInfo)
-> ((Arg String, Type) -> Arg String)
-> (Arg String, Type)
-> ArgInfo
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg String, Type) -> Arg String
forall a b. (a, b) -> a
fst) [(Arg String, Type)]
xs
    recSub :: Int -> Substitution
recSub Int
i = ConHead -> [ArgInfo] -> Int -> Substitution
unpackSub ConHead
con [ArgInfo]
infos Int
i
    go :: Int -> [(Arg String, Type)] -> Telescope
go Int
_ [] = Telescope
forall a. Tele a
EmptyTel
    go Int
i ((Arg String
name, Type
ty) : [(Arg String, Type)]
xs) = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Type -> Dom Type
dom Type
ty') (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ String -> Telescope -> Abs Telescope
forall a. String -> a -> Abs a
Abs (Arg String -> String
forall e. Arg e -> e
unArg Arg String
name) (Telescope -> Abs Telescope) -> Telescope -> Abs Telescope
forall a b. (a -> b) -> a -> b
$ Int -> [(Arg String, Type)] -> Telescope
go (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) [(Arg String, Type)]
xs
      where ty' :: Type
ty' = Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Int -> Substitution
recSub Int
i) Type
ty
            dom :: Type -> Dom Type
dom = ArgInfo -> String -> Type -> Dom Type
forall a. ArgInfo -> String -> a -> Dom a
defaultNamedArgDom (Arg String -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo Arg String
name) (Arg String -> String
forall e. Arg e -> e
unArg Arg String
name)

-- | Create metas for all used generalizable variables and their dependencies.
createGenValues ::
     Set QName
       -- ^ Possibly empty set of generalizable variables.
  -> TCM (Map MetaId QName, Map QName GeneralizedValue)
       -- ^ A bimap from generalizable variables to their metas.
createGenValues :: Set QName -> TCM (Map MetaId QName, Map QName GeneralizedValue)
createGenValues Set QName
s = do
  genvals <- Lens' TCEnv DoGeneralize
-> (DoGeneralize -> DoGeneralize)
-> TCMT IO [(QName, (MetaId, GeneralizedValue))]
-> TCMT IO [(QName, (MetaId, GeneralizedValue))]
forall (m :: * -> *) a b.
MonadTCEnv m =>
Lens' TCEnv a -> (a -> a) -> m b -> m b
locallyTC (DoGeneralize -> f DoGeneralize) -> TCEnv -> f TCEnv
Lens' TCEnv DoGeneralize
eGeneralizeMetas (DoGeneralize -> DoGeneralize -> DoGeneralize
forall a b. a -> b -> a
const DoGeneralize
YesGeneralizeVar) (TCMT IO [(QName, (MetaId, GeneralizedValue))]
 -> TCMT IO [(QName, (MetaId, GeneralizedValue))])
-> TCMT IO [(QName, (MetaId, GeneralizedValue))]
-> TCMT IO [(QName, (MetaId, GeneralizedValue))]
forall a b. (a -> b) -> a -> b
$
    [QName]
-> (QName -> TCMT IO (QName, (MetaId, GeneralizedValue)))
-> TCMT IO [(QName, (MetaId, GeneralizedValue))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM ((QName -> QName -> Ordering) -> [QName] -> [QName]
forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy (Range -> Range -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Range -> Range -> Ordering)
-> (QName -> Range) -> QName -> QName -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` QName -> Range
forall a. HasRange a => a -> Range
getRange) ([QName] -> [QName]) -> [QName] -> [QName]
forall a b. (a -> b) -> a -> b
$ Set QName -> [QName]
forall a. Set a -> [a]
Set.toList Set QName
s) \ QName
x -> do
      (QName
x,) ((MetaId, GeneralizedValue) -> (QName, (MetaId, GeneralizedValue)))
-> TCMT IO (MetaId, GeneralizedValue)
-> TCMT IO (QName, (MetaId, GeneralizedValue))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> TCMT IO (MetaId, GeneralizedValue)
createGenValue QName
x
  let metaMap = (QName -> QName -> QName) -> [(MetaId, QName)] -> Map MetaId QName
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
Map.fromListWith QName -> QName -> QName
forall a. HasCallStack => a
__IMPOSSIBLE__ [ (MetaId
m, QName
x) | (QName
x, (MetaId
m, GeneralizedValue
_)) <- [(QName, (MetaId, GeneralizedValue))]
genvals ]
      nameMap = (GeneralizedValue -> GeneralizedValue -> GeneralizedValue)
-> [(QName, GeneralizedValue)] -> Map QName GeneralizedValue
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
Map.fromListWith GeneralizedValue -> GeneralizedValue -> GeneralizedValue
forall a. HasCallStack => a
__IMPOSSIBLE__ [ (QName
x, GeneralizedValue
v) | (QName
x, (MetaId
_, GeneralizedValue
v)) <- [(QName, (MetaId, GeneralizedValue))]
genvals ]
  return (metaMap, nameMap)

-- | Create a generalizable meta for a generalizable variable.
createGenValue ::
     QName
       -- ^ Name of a generalizable variable.
  -> TCM (MetaId, GeneralizedValue)
       -- ^ Generated metavariable and its representation as typed term.
createGenValue :: QName -> TCMT IO (MetaId, GeneralizedValue)
createGenValue QName
x = QName
-> TCMT IO (MetaId, GeneralizedValue)
-> TCMT IO (MetaId, GeneralizedValue)
forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange QName
x (TCMT IO (MetaId, GeneralizedValue)
 -> TCMT IO (MetaId, GeneralizedValue))
-> TCMT IO (MetaId, GeneralizedValue)
-> TCMT IO (MetaId, GeneralizedValue)
forall a b. (a -> b) -> a -> b
$ do
  cp  <- Lens' TCEnv CheckpointId -> TCMT IO CheckpointId
forall (m :: * -> *) a. MonadTCEnv m => Lens' TCEnv a -> m a
viewTC (CheckpointId -> f CheckpointId) -> TCEnv -> f TCEnv
Lens' TCEnv CheckpointId
eCurrentCheckpoint

  def <- instantiateDef =<< getConstInfo x
  let
    nGen = case Definition -> Defn
theDef Definition
def of
      GeneralizableVar NumGeneralizableArgs
NoGeneralizableArgs       -> Int
0
      GeneralizableVar (SomeGeneralizableArgs Int
n) -> Int
n
      Defn
_ -> Int
forall a. HasCallStack => a
__IMPOSSIBLE__

    ty         = Definition -> Type
defType Definition
def
    TelV tel _ = telView' ty
    -- Generalizable variables are never explicit, so if they're given as
    -- explicit we default to hidden.
    argTel     = [Dom (String, Type)] -> Telescope
telFromList ([Dom (String, Type)] -> Telescope)
-> [Dom (String, Type)] -> Telescope
forall a b. (a -> b) -> a -> b
$ (Dom (String, Type) -> Dom (String, Type))
-> [Dom (String, Type)] -> [Dom (String, Type)]
forall a b. (a -> b) -> [a] -> [b]
map Dom (String, Type) -> Dom (String, Type)
forall a. LensHiding a => a -> a
hideExplicit ([Dom (String, Type)] -> [Dom (String, Type)])
-> [Dom (String, Type)] -> [Dom (String, Type)]
forall a b. (a -> b) -> a -> b
$ Int -> [Dom (String, Type)] -> [Dom (String, Type)]
forall a. Int -> [a] -> [a]
take Int
nGen ([Dom (String, Type)] -> [Dom (String, Type)])
-> [Dom (String, Type)] -> [Dom (String, Type)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel

  args <- newTelMeta argTel
  metaType <- piApplyM ty args

  let name = Name -> String
forall a. Pretty a => a -> String
prettyShow (Name -> String) -> Name -> String
forall a b. (a -> b) -> a -> b
$ Name -> Name
nameConcrete (Name -> Name) -> Name -> Name
forall a b. (a -> b) -> a -> b
$ QName -> Name
qnameName QName
x
  (m, term) <- newNamedValueMeta DontRunMetaOccursCheck name CmpLeq metaType

  -- Freeze the meta to prevent named generalizable metas from being
  -- instantiated, and set the quantity of the meta to the declared
  -- quantity of the generalisable variable.
  updateMetaVar m $ \ MetaVariable
mv ->
    Modality -> MetaVariable -> MetaVariable
forall a. LensModality a => Modality -> a -> a
setModality (ArgInfo -> Modality
forall a. LensModality a => a -> Modality
getModality (Definition -> ArgInfo
defArgInfo Definition
def)) (MetaVariable -> MetaVariable) -> MetaVariable -> MetaVariable
forall a b. (a -> b) -> a -> b
$
    MetaVariable
mv { mvFrozen = Frozen }

  -- Set up names of arg metas
  forM_ (zip3 [1..] (map unArg args) (telToList argTel)) $ \ case
    (Integer
i, MetaV MetaId
m Elims
_, Dom{unDom :: forall t e. Dom' t e -> e
unDom = (String
x, Type
_)}) -> do
      let suf :: String -> String
suf String
"_" = Integer -> String
forall a. Show a => a -> String
show Integer
i
          suf String
""  = Integer -> String
forall a. Show a => a -> String
show Integer
i
          suf String
x   = String
x
      MetaId -> String -> TCMT IO ()
forall (m :: * -> *). MonadMetaSolver m => MetaId -> String -> m ()
setMetaNameSuggestion MetaId
m (String
name String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"." String -> String -> String
forall a. [a] -> [a] -> [a]
++ String -> String
suf String
x)
    (Integer, Term, Dom (String, Type))
_ -> () -> TCMT IO ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()  -- eta expanded

  -- Update the ArgInfos for the named meta. The argument metas are
  -- created with the correct ArgInfo.
  setMetaGeneralizableArgInfo m $ hideExplicit (defArgInfo def)

  reportSDoc "tc.generalize" 50 $ vcat
    [ "created metas for generalized variable" <+> prettyTCM x
    , nest 2 $ "top  =" <+> prettyTCM term
    , nest 2 $ "args =" <+> prettyTCM args ]

  case term of
    MetaV{} -> () -> TCMT IO ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    Term
_       -> Doc -> TCMT IO ()
forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
Doc -> m a
genericDocError (Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (TCMT IO Doc
"Cannot generalize over" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => QName -> m Doc
prettyTCM QName
x TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
"of eta-expandable type") TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<?>
                                    Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
metaType
  return . (m,) $ GeneralizedValue
    { genvalCheckpoint = cp
    , genvalTerm       = term
    , genvalType       = metaType
    }

  where
    hideExplicit :: LensHiding a => a -> a
    hideExplicit :: forall a. LensHiding a => a -> a
hideExplicit = (a -> Bool) -> (a -> a) -> a -> a
forall b a. IsBool b => (a -> b) -> (a -> a) -> a -> a
applyWhenIts a -> Bool
forall a. LensHiding a => a -> Bool
visible a -> a
forall a. LensHiding a => a -> a
hide


-- | Create a not-yet correct record type for the generalized telescope. It's not yet correct since
--   we haven't computed the telescope yet, and we need the record type to do it.
createGenRecordType :: Type -> [MetaId] -> TCM (QName, ConHead, [QName])
createGenRecordType :: Type -> [MetaId] -> TCMT IO (QName, ConHead, [QName])
createGenRecordType genRecMeta :: Type
genRecMeta@(El Sort
genRecSort Term
_) [MetaId]
sortedMetas = do
  current <- TCMT IO ModuleName
forall (m :: * -> *). MonadTCEnv m => m ModuleName
currentModule
  let freshQName String
s = ModuleName -> Name -> QName
qualify ModuleName
current (Name -> QName) -> TCMT IO Name -> TCMT IO QName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> String -> TCMT IO Name
forall a (m :: * -> *).
(FreshName a, MonadFresh NameId m) =>
a -> m Name
forall (m :: * -> *). MonadFresh NameId m => String -> m Name
freshName_ (String
s :: String)
      mkFieldName  = String -> TCMT IO QName
freshQName (String -> TCMT IO QName)
-> (String -> String) -> String -> TCMT IO QName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (String
generalizedFieldName String -> String -> String
forall a. [a] -> [a] -> [a]
++) (String -> TCMT IO QName)
-> (MetaId -> TCMT IO String) -> MetaId -> TCMT IO QName
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< MetaId -> TCMT IO String
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m String
getMetaNameSuggestion
  genRecFields <- mapM (defaultDom <.> mkFieldName) sortedMetas
  genRecName   <- freshQName "GeneralizeTel"
  genRecCon    <- freshQName "mkGeneralizeTel" <&> \ QName
con -> ConHead
                  { conName :: QName
conName      = QName
con
                  , conDataRecord :: DataOrRecord
conDataRecord= PatternOrCopattern -> DataOrRecord
forall p. p -> DataOrRecord' p
IsRecord PatternOrCopattern
CopatternMatching
                  , conInductive :: Induction
conInductive = Induction
Inductive
                  , conFields :: [Arg QName]
conFields    = (Dom QName -> Arg QName) -> [Dom QName] -> [Arg QName]
forall a b. (a -> b) -> [a] -> [b]
map Dom QName -> Arg QName
forall t a. Dom' t a -> Arg a
argFromDom [Dom QName]
genRecFields
                  }
  projIx <- succ . size <$> getContext
  erasure <- optErasure <$> pragmaOptions
  inTopContext $ forM_ (zip sortedMetas genRecFields) $ \ (MetaId
meta, Dom QName
fld) -> do
    fieldTy <- MetaId -> TCM Type
forall (m :: * -> *). ReadTCState m => MetaId -> m Type
getMetaType MetaId
meta
    let field = Dom QName -> QName
forall t e. Dom' t e -> e
unDom Dom QName
fld
    addConstant' field (getArgInfo fld) fieldTy $ FunctionDefn $
      (emptyFunctionData_ erasure)
        { _funMutual     = Just []
        , _funTerminates = Just True
        , _funProjection = Right Projection
          { projProper   = Just genRecName
          , projOrig     = field
          , projFromType = defaultArg genRecName
          , projIndex    = projIx
          , projLams     = ProjLams [defaultArg "gtel"]
          }
        }
  addConstant' (conName genRecCon) defaultArgInfo __DUMMY_TYPE__ $ -- Filled in later
    Constructor { conPars   = 0
                , conArity  = length genRecFields
                , conSrcCon = genRecCon
                , conData   = genRecName
                , conAbstr  = ConcreteDef
                , conComp   = emptyCompKit
                , conProj   = Nothing
                , conForced = []
                , conErased = Nothing
                , conErasure = erasure
                , conInline  = False
                }
  let dummyTel t
0 = Telescope
forall a. Tele a
EmptyTel
      dummyTel t
n = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Type -> Dom Type
forall a. a -> Dom a
defaultDom Type
HasCallStack => Type
__DUMMY_TYPE__) (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ String -> Telescope -> Abs Telescope
forall a. String -> a -> Abs a
Abs String
"_" (Telescope -> Abs Telescope) -> Telescope -> Abs Telescope
forall a b. (a -> b) -> a -> b
$ t -> Telescope
dummyTel (t
n t -> t -> t
forall a. Num a => a -> a -> a
- t
1)
  addConstant' genRecName defaultArgInfo (sort genRecSort) $
    Record { recPars         = 0
           , recClause       = Nothing
           , recConHead      = genRecCon
           , recNamedCon     = False
           , recFields       = genRecFields
           , recTel          = dummyTel (length genRecFields) -- Filled in later
           , recMutual       = Just []
           , recEtaEquality' = Inferred YesEta
           , recPatternMatching = CopatternMatching
           , recInduction    = Nothing
           , recTerminates   = Just True    -- not recursive
           , recAbstr        = ConcreteDef
           , recComp         = emptyCompKit
           }
  reportSDoc "tc.generalize" 20 $ vcat
    [ text "created genRec" <+> prettyList_ (map (text . prettyShow . unDom) genRecFields) ]
  reportSDoc "tc.generalize" 80 $ vcat
    [ text "created genRec" <+> text (prettyShow genRecFields) ]
  -- Solve the genRecMeta
  args <- getContextArgs
  let genRecTy = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
genRecSort (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ QName -> Elims -> Term
Def QName
genRecName (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply Args
args
  noConstraints $ equalType genRecTy genRecMeta
  return (genRecName, genRecCon, map unDom genRecFields)

-- | Once we have the generalized telescope we can fill in the missing details of the record type.
fillInGenRecordDetails :: QName -> ConHead -> [QName] -> Type -> Telescope -> TCM ()
fillInGenRecordDetails :: QName -> ConHead -> [QName] -> Type -> Telescope -> TCMT IO ()
fillInGenRecordDetails QName
name ConHead
con [QName]
fields Type
recTy Telescope
fieldTel = do
  cxtTel <- (Dom Type -> Dom Type) -> Telescope -> Telescope
forall a b. (a -> b) -> Tele a -> Tele b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Dom Type -> Dom Type
forall a. (LensHiding a, LensRelevance a) => a -> a
hideAndRelParams (Telescope -> Telescope) -> TCMT IO Telescope -> TCMT IO Telescope
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TCMT IO Telescope
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Telescope
getContextTelescope
  let fullTel = Telescope
cxtTel Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
fieldTel
  -- Field types
  let mkFieldTypes [] Telescope
EmptyTel = []
      mkFieldTypes (QName
fld : [QName]
flds) (ExtendTel Dom Type
ty Abs Telescope
ftel) =
          Telescope -> Type -> Type
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
cxtTel (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Term
Pi (Type -> Dom Type
forall a. a -> Dom a
defaultDom Type
recTy) (String -> Type -> Abs Type
forall a. String -> a -> Abs a
Abs String
"r" (Type -> Abs Type) -> Type -> Abs Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
ty)) Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:
          [QName] -> Telescope -> [Type]
mkFieldTypes [QName]
flds (Abs Telescope -> SubstArg Telescope -> Telescope
forall a. Subst a => Abs a -> SubstArg a -> a
absApp Abs Telescope
ftel Term
SubstArg Telescope
proj)
        where
          s :: Sort
s = Dom Type -> Abs Type -> Sort
mkPiSort (Type -> Dom Type
forall a. a -> Dom a
defaultDom Type
recTy) (String -> Type -> Abs Type
forall a. String -> a -> Abs a
Abs String
"r" (Type -> Abs Type) -> Type -> Abs Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
ty)
          proj :: Term
proj = Int -> Elims -> Term
Var Int
0 [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
fld]
      mkFieldTypes [QName]
_ Telescope
_ = [Type]
forall a. HasCallStack => a
__IMPOSSIBLE__
  let fieldTypes = [QName] -> Telescope -> [Type]
mkFieldTypes [QName]
fields (Int -> Telescope -> Telescope
forall a. Subst a => Int -> a -> a
raise Int
1 Telescope
fieldTel)
  reportSDoc "tc.generalize" 40 $ text "Field types:" <+> inTopContext (nest 2 $ vcat $ map prettyTCM fieldTypes)
  zipWithM_ setType fields fieldTypes
  -- Constructor type
  let conType = Telescope
fullTel Telescope -> Type -> Type
forall t. Abstract t => Telescope -> t -> t
`abstract` Int -> Type -> Type
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
fieldTel) Type
recTy
  reportSDoc "tc.generalize" 40 $ text "Final genRecCon type:" <+> inTopContext (prettyTCM conType)
  setType (conName con) conType
  -- Record telescope: Includes both parameters and fields.
  modifyGlobalDefinition name $ set (lensTheDef . lensRecord . lensRecTel) fullTel
  -- #7380: Also add clauses to the field definitions
  let n      = [QName] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [QName]
fields
      cpi    = ConPatternInfo
noConPatternInfo
      fldTys = (Dom (String, Type) -> Arg Type)
-> [Dom (String, Type)] -> [Arg Type]
forall a b. (a -> b) -> [a] -> [b]
map (((String, Type) -> Type) -> Arg (String, Type) -> Arg Type
forall a b. (a -> b) -> Arg a -> Arg b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (String, Type) -> Type
forall a b. (a, b) -> b
snd (Arg (String, Type) -> Arg Type)
-> (Dom (String, Type) -> Arg (String, Type))
-> Dom (String, Type)
-> Arg Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (String, Type) -> Arg (String, Type)
forall t a. Dom' t a -> Arg a
argFromDom) ([Dom (String, Type)] -> [Arg Type])
-> [Dom (String, Type)] -> [Arg Type]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
fieldTel
      conPat = ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' DBPatVar)]
-> Pattern' DBPatVar
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
con ConPatternInfo
cpi [ (Pattern' DBPatVar -> Named_ (Pattern' DBPatVar))
-> Arg (Pattern' DBPatVar) -> NamedArg (Pattern' DBPatVar)
forall a b. (a -> b) -> Arg a -> Arg b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Pattern' DBPatVar -> Named_ (Pattern' DBPatVar)
forall a name. a -> Named name a
unnamed (Arg (Pattern' DBPatVar) -> NamedArg (Pattern' DBPatVar))
-> Arg (Pattern' DBPatVar) -> NamedArg (Pattern' DBPatVar)
forall a b. (a -> b) -> a -> b
$ DBPatVar -> Pattern' DBPatVar
forall a. a -> Pattern' a
varP (String -> Int -> DBPatVar
DBPatVar String
"x" Int
i) Pattern' DBPatVar -> Arg Type -> Arg (Pattern' DBPatVar)
forall a b. a -> Arg b -> Arg a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Arg Type
arg | (Int
i, Arg Type
arg) <- [Int] -> [Arg Type] -> [(Int, Arg Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip (Int -> [Int]
forall a. Integral a => a -> [a]
downFrom Int
n) [Arg Type]
fldTys ]
  forM_ (zip3 (downFrom n) fields fldTys) \ (Int
i, QName
fld, Arg Type
fldTy) -> do
    QName -> ([Clause] -> [Clause]) -> TCMT IO ()
modifyFunClauses QName
fld \ [Clause]
_ ->
      [Clause
        { clauseLHSRange :: Range
clauseLHSRange    = Range
forall a. Range' a
noRange
        , clauseFullRange :: Range
clauseFullRange   = Range
forall a. Range' a
noRange
        , clauseTel :: Telescope
clauseTel         = Telescope
fieldTel
        , namedClausePats :: [NamedArg (Pattern' DBPatVar)]
namedClausePats   = [Pattern' DBPatVar -> NamedArg (Pattern' DBPatVar)
forall a. a -> NamedArg a
defaultNamedArg Pattern' DBPatVar
conPat]
        , clauseBody :: Maybe Term
clauseBody        = Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
i
        , clauseType :: Maybe (Arg Type)
clauseType        = Arg Type -> Maybe (Arg Type)
forall a. a -> Maybe a
Just (Arg Type -> Maybe (Arg Type)) -> Arg Type -> Maybe (Arg Type)
forall a b. (a -> b) -> a -> b
$ Int -> Arg Type -> Arg Type
forall a. Subst a => Int -> a -> a
raise (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Arg Type
fldTy
        , clauseCatchall :: Bool
clauseCatchall    = Bool
False
        , clauseRecursive :: Maybe Bool
clauseRecursive   = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
False
        , clauseUnreachable :: Maybe Bool
clauseUnreachable = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
False
        , clauseEllipsis :: ExpandedEllipsis
clauseEllipsis    = ExpandedEllipsis
NoEllipsis
        , clauseWhereModule :: Maybe ModuleName
clauseWhereModule = Maybe ModuleName
forall a. Maybe a
Nothing
        }]
  where
    setType :: QName -> Type -> m ()
setType QName
q Type
ty = QName -> (Definition -> Definition) -> m ()
forall (m :: * -> *).
MonadTCState m =>
QName -> (Definition -> Definition) -> m ()
modifyGlobalDefinition QName
q ((Definition -> Definition) -> m ())
-> (Definition -> Definition) -> m ()
forall a b. (a -> b) -> a -> b
$ \ Definition
d -> Definition
d { defType = ty }