module Agda.Syntax.Abstract.Views where
import Prelude hiding (null)
import Control.Applicative ( Const(Const), getConst )
import Control.Monad.Identity
import Data.Foldable (foldMap)
import qualified Data.DList as DL
import Data.Semigroup ((<>))
import Data.Void
import Agda.Syntax.Common
import Agda.Syntax.Abstract as A
import Agda.Syntax.Concrete (FieldAssignment', exprFieldA, TacticAttribute')
import Agda.Syntax.Info
import Agda.Syntax.Scope.Base (KindOfName(..), conKindOfName, WithKind(..))
import Agda.Utils.Either
import Agda.Utils.List1 (List1)
import Agda.Utils.Null
import Agda.Utils.Singleton
import Agda.Utils.Impossible
data AppView' arg = Application Expr [NamedArg arg]
deriving ((forall a b. (a -> b) -> AppView' a -> AppView' b)
-> (forall a b. a -> AppView' b -> AppView' a) -> Functor AppView'
forall a b. a -> AppView' b -> AppView' a
forall a b. (a -> b) -> AppView' a -> AppView' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall a b. (a -> b) -> AppView' a -> AppView' b
fmap :: forall a b. (a -> b) -> AppView' a -> AppView' b
$c<$ :: forall a b. a -> AppView' b -> AppView' a
<$ :: forall a b. a -> AppView' b -> AppView' a
Functor)
type AppView = AppView' Expr
appView :: Expr -> AppView
appView :: Type -> AppView
appView = ((AppInfo, Type) -> Type) -> AppView' (AppInfo, Type) -> AppView
forall a b. (a -> b) -> AppView' a -> AppView' b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (AppInfo, Type) -> Type
forall a b. (a, b) -> b
snd (AppView' (AppInfo, Type) -> AppView)
-> (Type -> AppView' (AppInfo, Type)) -> Type -> AppView
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> AppView' (AppInfo, Type)
appView'
appView' :: Expr -> AppView' (AppInfo, Expr)
appView' :: Type -> AppView' (AppInfo, Type)
appView' Type
e = [NamedArg (AppInfo, Type)] -> AppView' (AppInfo, Type)
f (DList (NamedArg (AppInfo, Type)) -> [NamedArg (AppInfo, Type)]
forall a. DList a -> [a]
DL.toList DList (NamedArg (AppInfo, Type))
es)
where
([NamedArg (AppInfo, Type)] -> AppView' (AppInfo, Type)
f, DList (NamedArg (AppInfo, Type))
es) = Type
-> ([NamedArg (AppInfo, Type)] -> AppView' (AppInfo, Type),
DList (NamedArg (AppInfo, Type)))
forall {arg}.
Type
-> ([NamedArg arg] -> AppView' arg,
DList (NamedArg (AppInfo, Type)))
appView'' Type
e
appView'' :: Type
-> ([NamedArg arg] -> AppView' arg,
DList (NamedArg (AppInfo, Type)))
appView'' = \case
App AppInfo
i Type
e1 NamedArg Type
e2
| Dot ExprInfo
_ Type
e2' <- Type -> Type
unScope (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ NamedArg Type -> Type
forall a. NamedArg a -> a
namedArg NamedArg Type
e2
, Just Type
f <- Type -> Maybe Type
maybeProjTurnPostfix Type
e2'
, NamedArg Type -> Hiding
forall a. LensHiding a => a -> Hiding
getHiding NamedArg Type
e2 Hiding -> Hiding -> Bool
forall a. Eq a => a -> a -> Bool
== Hiding
NotHidden
-> (Type -> [NamedArg arg] -> AppView' arg
forall arg. Type -> [NamedArg arg] -> AppView' arg
Application Type
f, NamedArg (AppInfo, Type) -> DList (NamedArg (AppInfo, Type))
forall el coll. Singleton el coll => el -> coll
singleton ((AppInfo, Type) -> NamedArg (AppInfo, Type)
forall a. a -> NamedArg a
defaultNamedArg (AppInfo
i, Type
e1)))
App AppInfo
i Type
e1 NamedArg Type
arg | ([NamedArg arg] -> AppView' arg
f, DList (NamedArg (AppInfo, Type))
es) <- Type
-> ([NamedArg arg] -> AppView' arg,
DList (NamedArg (AppInfo, Type)))
appView'' Type
e1 ->
([NamedArg arg] -> AppView' arg
f, DList (NamedArg (AppInfo, Type))
es DList (NamedArg (AppInfo, Type))
-> NamedArg (AppInfo, Type) -> DList (NamedArg (AppInfo, Type))
forall a. DList a -> a -> DList a
`DL.snoc` ((Named NamedName Type -> Named NamedName (AppInfo, Type))
-> NamedArg Type -> NamedArg (AppInfo, Type)
forall a b. (a -> b) -> Arg a -> Arg b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Named NamedName Type -> Named NamedName (AppInfo, Type))
-> NamedArg Type -> NamedArg (AppInfo, Type))
-> ((Type -> (AppInfo, Type))
-> Named NamedName Type -> Named NamedName (AppInfo, Type))
-> (Type -> (AppInfo, Type))
-> NamedArg Type
-> NamedArg (AppInfo, Type)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Type -> (AppInfo, Type))
-> Named NamedName Type -> Named NamedName (AppInfo, Type)
forall a b. (a -> b) -> Named NamedName a -> Named NamedName b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) (AppInfo
i,) NamedArg Type
arg)
ScopedExpr ScopeInfo
_ Type
e -> Type
-> ([NamedArg arg] -> AppView' arg,
DList (NamedArg (AppInfo, Type)))
appView'' Type
e
Type
e -> (Type -> [NamedArg arg] -> AppView' arg
forall arg. Type -> [NamedArg arg] -> AppView' arg
Application Type
e, DList (NamedArg (AppInfo, Type))
forall a. Monoid a => a
mempty)
maybeProjTurnPostfix :: Expr -> Maybe Expr
maybeProjTurnPostfix :: Type -> Maybe Type
maybeProjTurnPostfix Type
e =
case Type
e of
ScopedExpr ScopeInfo
i Type
e' -> ScopeInfo -> Type -> Type
ScopedExpr ScopeInfo
i (Type -> Type) -> Maybe Type -> Maybe Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> Maybe Type
maybeProjTurnPostfix Type
e'
Proj ProjOrigin
_ AmbiguousQName
x -> Type -> Maybe Type
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Maybe Type) -> Type -> Maybe Type
forall a b. (a -> b) -> a -> b
$ ProjOrigin -> AmbiguousQName -> Type
Proj ProjOrigin
ProjPostfix AmbiguousQName
x
Type
_ -> Maybe Type
forall a. Maybe a
Nothing
unAppView :: AppView -> Expr
unAppView :: AppView -> Type
unAppView (Application Type
h [NamedArg Type]
es) =
(Type -> NamedArg Type -> Type) -> Type -> [NamedArg Type] -> Type
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (AppInfo -> Type -> NamedArg Type -> Type
App AppInfo
defaultAppInfo_) Type
h [NamedArg Type]
es
data LamView = LamView [LamBinding] Expr
lamView :: Expr -> LamView
lamView :: Type -> LamView
lamView (Lam ExprInfo
i LamBinding
b Type
e) = LamBinding -> LamView -> LamView
cons LamBinding
b (LamView -> LamView) -> LamView -> LamView
forall a b. (a -> b) -> a -> b
$ Type -> LamView
lamView Type
e
where cons :: LamBinding -> LamView -> LamView
cons LamBinding
b (LamView [LamBinding]
bs Type
e) = [LamBinding] -> Type -> LamView
LamView (LamBinding
b LamBinding -> [LamBinding] -> [LamBinding]
forall a. a -> [a] -> [a]
: [LamBinding]
bs) Type
e
lamView (ScopedExpr ScopeInfo
_ Type
e) = Type -> LamView
lamView Type
e
lamView Type
e = [LamBinding] -> Type -> LamView
LamView [] Type
e
data PiView = PiView [(ExprInfo, Telescope1)] Type
piView :: Expr -> PiView
piView :: Type -> PiView
piView = \case
Pi ExprInfo
i Telescope1
tel Type
b -> PiView -> PiView
cons (PiView -> PiView) -> PiView -> PiView
forall a b. (a -> b) -> a -> b
$ Type -> PiView
piView Type
b
where cons :: PiView -> PiView
cons (PiView [(ExprInfo, Telescope1)]
tels Type
t) = [(ExprInfo, Telescope1)] -> Type -> PiView
PiView ((ExprInfo
i,Telescope1
tel) (ExprInfo, Telescope1)
-> [(ExprInfo, Telescope1)] -> [(ExprInfo, Telescope1)]
forall a. a -> [a] -> [a]
: [(ExprInfo, Telescope1)]
tels) Type
t
Type
e -> [(ExprInfo, Telescope1)] -> Type -> PiView
PiView [] Type
e
unPiView :: PiView -> Expr
unPiView :: PiView -> Type
unPiView (PiView [(ExprInfo, Telescope1)]
tels Type
t) = ((ExprInfo, Telescope1) -> Type -> Type)
-> Type -> [(ExprInfo, Telescope1)] -> Type
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr ((ExprInfo -> Telescope1 -> Type -> Type)
-> (ExprInfo, Telescope1) -> Type -> Type
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry ExprInfo -> Telescope1 -> Type -> Type
Pi) Type
t [(ExprInfo, Telescope1)]
tels
asView :: A.Pattern -> ([Name], A.Pattern)
asView :: Pattern -> ([Name], Pattern)
asView (A.AsP PatInfo
_ BindName
x Pattern
p) = (\([Name]
asb, Pattern
p) -> (BindName -> Name
unBind BindName
x Name -> [Name] -> [Name]
forall a. a -> [a] -> [a]
: [Name]
asb, Pattern
p)) (([Name], Pattern) -> ([Name], Pattern))
-> ([Name], Pattern) -> ([Name], Pattern)
forall a b. (a -> b) -> a -> b
$ Pattern -> ([Name], Pattern)
asView Pattern
p
asView Pattern
p = ([], Pattern
p)
unScope :: Expr -> Expr
unScope :: Type -> Type
unScope (ScopedExpr ScopeInfo
scope Type
e) = Type -> Type
unScope Type
e
unScope (QuestionMark MetaInfo
i InteractionId
ii) = MetaInfo -> InteractionId -> Type
QuestionMark (MetaInfo
i {metaScope = empty}) InteractionId
ii
unScope (Underscore MetaInfo
i) = MetaInfo -> Type
Underscore (MetaInfo
i {metaScope = empty})
unScope Type
e = Type
e
deepUnscope :: ExprLike a => a -> a
deepUnscope :: forall a. ExprLike a => a -> a
deepUnscope = (Type -> Type) -> a -> a
forall a. ExprLike a => (Type -> Type) -> a -> a
mapExpr Type -> Type
unScope
deepUnscopeDecls :: [A.Declaration] -> [A.Declaration]
deepUnscopeDecls :: [Declaration] -> [Declaration]
deepUnscopeDecls = (Declaration -> [Declaration]) -> [Declaration] -> [Declaration]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Declaration -> [Declaration]
deepUnscopeDecl
deepUnscopeDecl :: A.Declaration -> [A.Declaration]
deepUnscopeDecl :: Declaration -> [Declaration]
deepUnscopeDecl = \case
A.ScopedDecl ScopeInfo
_ [Declaration]
ds -> [Declaration] -> [Declaration]
deepUnscopeDecls [Declaration]
ds
A.Mutual MutualInfo
i [Declaration]
ds -> [MutualInfo -> [Declaration] -> Declaration
A.Mutual MutualInfo
i ([Declaration] -> [Declaration]
deepUnscopeDecls [Declaration]
ds)]
A.Section Range
i Erased
e ModuleName
m GeneralizeTelescope
tel [Declaration]
ds -> [Range
-> Erased
-> ModuleName
-> GeneralizeTelescope
-> [Declaration]
-> Declaration
A.Section Range
i Erased
e ModuleName
m (GeneralizeTelescope -> GeneralizeTelescope
forall a. ExprLike a => a -> a
deepUnscope GeneralizeTelescope
tel)
([Declaration] -> [Declaration]
deepUnscopeDecls [Declaration]
ds)]
A.RecDef DefInfo
i QName
x UniverseCheck
uc RecordDirectives
dir DataDefParams
bs Type
e [Declaration]
ds -> [ DefInfo
-> QName
-> UniverseCheck
-> RecordDirectives
-> DataDefParams
-> Type
-> [Declaration]
-> Declaration
A.RecDef DefInfo
i QName
x UniverseCheck
uc RecordDirectives
dir (DataDefParams -> DataDefParams
forall a. ExprLike a => a -> a
deepUnscope DataDefParams
bs)
(Type -> Type
forall a. ExprLike a => a -> a
deepUnscope Type
e)
([Declaration] -> [Declaration]
deepUnscopeDecls [Declaration]
ds) ]
Declaration
d -> [Declaration -> Declaration
forall a. ExprLike a => a -> a
deepUnscope Declaration
d]
type RecurseExprFn m a = Applicative m => (Expr -> m Expr -> m Expr) -> a -> m a
type RecurseExprRecFn m = forall a. ExprLike a => a -> m a
type FoldExprFn m a = Monoid m => (Expr -> m) -> a -> m
type FoldExprRecFn m = forall a. ExprLike a => a -> m
type TraverseExprFn m a = (Applicative m, Monad m) => (Expr -> m Expr) -> a -> m a
type TraverseExprRecFn m = forall a. ExprLike a => a -> m a
class ExprLike a where
recurseExpr :: RecurseExprFn m a
default recurseExpr :: (Traversable f, ExprLike a', a ~ f a', Applicative m)
=> (Expr -> m Expr -> m Expr) -> a -> m a
recurseExpr = (a' -> m a') -> a -> m a
(a' -> m a') -> f a' -> m (f a')
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse ((a' -> m a') -> a -> m a)
-> ((Type -> m Type -> m Type) -> a' -> m a')
-> (Type -> m Type -> m Type)
-> a
-> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Type -> m Type -> m Type) -> a' -> m a'
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a'
recurseExpr
foldExpr :: FoldExprFn m a
foldExpr Type -> m
f = Const m a -> m
forall {k} a (b :: k). Const a b -> a
getConst (Const m a -> m) -> (a -> Const m a) -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Type -> Const m Type -> Const m Type) -> a -> Const m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr (\ Type
pre Const m Type
post -> m -> Const m Type
forall {k} a (b :: k). a -> Const a b
Const (Type -> m
f Type
pre) Const m Type -> Const m Type -> Const m Type
forall a b. Const m a -> Const m b -> Const m a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* Const m Type
post)
traverseExpr :: TraverseExprFn m a
traverseExpr Type -> m Type
f = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr (\ Type
pre m Type
post -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< m Type
post)
mapExpr :: (Expr -> Expr) -> (a -> a)
mapExpr Type -> Type
f = Identity a -> a
forall a. Identity a -> a
runIdentity (Identity a -> a) -> (a -> Identity a) -> a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Type -> Identity Type) -> a -> Identity a
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m a
traverseExpr (Type -> Identity Type
forall a. a -> Identity a
Identity (Type -> Identity Type) -> (Type -> Type) -> Type -> Identity Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Type
f)
instance ExprLike Expr where
recurseExpr :: forall m. RecurseExprFn m Expr
recurseExpr :: forall (m :: * -> *). RecurseExprFn m Type
recurseExpr Type -> m Type -> m Type
f Type
e0 = Type -> m Type -> m Type
f Type
e0 (m Type -> m Type) -> m Type -> m Type
forall a b. (a -> b) -> a -> b
$ do
let
recurse :: RecurseExprRecFn m
recurse :: RecurseExprRecFn m
recurse a
e = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
e
case Type
e0 of
Var{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Def'{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Proj{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Con{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Lit{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
QuestionMark{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Underscore{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Dot ExprInfo
ei Type
e -> ExprInfo -> Type -> Type
Dot ExprInfo
ei (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e
App AppInfo
ei Type
e NamedArg Type
arg -> AppInfo -> Type -> NamedArg Type -> Type
App AppInfo
ei (Type -> NamedArg Type -> Type)
-> m Type -> m (NamedArg Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e m (NamedArg Type -> Type) -> m (NamedArg Type) -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamedArg Type -> m (NamedArg Type)
RecurseExprRecFn m
recurse NamedArg Type
arg
WithApp ExprInfo
ei Type
e List1 Type
es -> ExprInfo -> Type -> List1 Type -> Type
WithApp ExprInfo
ei (Type -> List1 Type -> Type) -> m Type -> m (List1 Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e m (List1 Type -> Type) -> m (List1 Type) -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> List1 Type -> m (List1 Type)
RecurseExprRecFn m
recurse List1 Type
es
Lam ExprInfo
ei LamBinding
b Type
e -> ExprInfo -> LamBinding -> Type -> Type
Lam ExprInfo
ei (LamBinding -> Type -> Type) -> m LamBinding -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> LamBinding -> m LamBinding
RecurseExprRecFn m
recurse LamBinding
b m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
recurse Type
e
AbsurdLam{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
ExtendedLam ExprInfo
ei DefInfo
di Erased
er QName
x List1 Clause
cls -> ExprInfo -> DefInfo -> Erased -> QName -> List1 Clause -> Type
ExtendedLam ExprInfo
ei DefInfo
di Erased
er QName
x (List1 Clause -> Type) -> m (List1 Clause) -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> List1 Clause -> m (List1 Clause)
RecurseExprRecFn m
recurse List1 Clause
cls
Pi ExprInfo
ei Telescope1
tel Type
e -> ExprInfo -> Telescope1 -> Type -> Type
Pi ExprInfo
ei (Telescope1 -> Type -> Type) -> m Telescope1 -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope1 -> m Telescope1
RecurseExprRecFn m
recurse Telescope1
tel m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
recurse Type
e
Generalized Set1 QName
s Type
e -> Set1 QName -> Type -> Type
Generalized Set1 QName
s (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e
Fun ExprInfo
ei Arg Type
arg Type
e -> ExprInfo -> Arg Type -> Type -> Type
Fun ExprInfo
ei (Arg Type -> Type -> Type) -> m (Arg Type) -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg Type -> m (Arg Type)
RecurseExprRecFn m
recurse Arg Type
arg m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
recurse Type
e
Let ExprInfo
ei List1 LetBinding
bs Type
e -> ExprInfo -> List1 LetBinding -> Type -> Type
Let ExprInfo
ei (List1 LetBinding -> Type -> Type)
-> m (List1 LetBinding) -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> List1 LetBinding -> m (List1 LetBinding)
RecurseExprRecFn m
recurse List1 LetBinding
bs m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
recurse Type
e
Rec RecInfo
ei RecordAssigns
bs -> RecInfo -> RecordAssigns -> Type
Rec RecInfo
ei (RecordAssigns -> Type) -> m RecordAssigns -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> RecordAssigns -> m RecordAssigns
RecurseExprRecFn m
recurse RecordAssigns
bs
RecUpdate RecInfo
ei Type
e Assigns
bs -> RecInfo -> Type -> Assigns -> Type
RecUpdate RecInfo
ei (Type -> Assigns -> Type) -> m Type -> m (Assigns -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e m (Assigns -> Type) -> m Assigns -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Assigns -> m Assigns
RecurseExprRecFn m
recurse Assigns
bs
ScopedExpr ScopeInfo
sc Type
e -> ScopeInfo -> Type -> Type
ScopedExpr ScopeInfo
sc (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e
Quote{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
QuoteTerm{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Unquote{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
DontCare Type
e -> Type -> Type
DontCare (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e
PatternSyn{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
Macro{} -> Type -> m Type
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
e0
foldExpr :: forall m. FoldExprFn m Expr
foldExpr :: forall m. FoldExprFn m Type
foldExpr Type -> m
f Type
e =
case Type
e of
Var{} -> m
m
Def'{} -> m
m
Proj{} -> m
m
Con{} -> m
m
PatternSyn{} -> m
m
Macro{} -> m
m
Lit{} -> m
m
QuestionMark{} -> m
m
Underscore{} -> m
m
Dot ExprInfo
_ Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
App AppInfo
_ Type
e NamedArg Type
e' -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` NamedArg Type -> m
FoldExprRecFn m
fold NamedArg Type
e'
WithApp ExprInfo
_ Type
e List1 Type
es -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` List1 Type -> m
FoldExprRecFn m
fold List1 Type
es
Lam ExprInfo
_ LamBinding
b Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` LamBinding -> m
FoldExprRecFn m
fold LamBinding
b m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
AbsurdLam{} -> m
m
ExtendedLam ExprInfo
_ DefInfo
_ Erased
_ QName
_ List1 Clause
cs -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` List1 Clause -> m
FoldExprRecFn m
fold List1 Clause
cs
Pi ExprInfo
_ Telescope1
tel Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Telescope1 -> m
FoldExprRecFn m
fold Telescope1
tel m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
Generalized Set1 QName
_ Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
Fun ExprInfo
_ Arg Type
e Type
e' -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Arg Type -> m
FoldExprRecFn m
fold Arg Type
e m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e'
Let ExprInfo
_ List1 LetBinding
bs Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` List1 LetBinding -> m
FoldExprRecFn m
fold List1 LetBinding
bs m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
Rec RecInfo
_ RecordAssigns
as -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` RecordAssigns -> m
FoldExprRecFn m
fold RecordAssigns
as
RecUpdate RecInfo
_ Type
e Assigns
as -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Assigns -> m
FoldExprRecFn m
fold Assigns
as
ScopedExpr ScopeInfo
_ Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
Quote{} -> m
m
QuoteTerm{} -> m
m
Unquote{} -> m
m
DontCare Type
e -> m
m m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
where
m :: m
m = Type -> m
f Type
e
fold :: FoldExprRecFn m
fold :: FoldExprRecFn m
fold = (Type -> m) -> a -> m
forall m. FoldExprFn m a
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f
traverseExpr :: forall m. TraverseExprFn m Expr
traverseExpr :: forall (m :: * -> *). TraverseExprFn m Type
traverseExpr Type -> m Type
f Type
e = do
let
trav :: TraverseExprRecFn m
trav :: TraverseExprRecFn m
trav a
e = (Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m a
traverseExpr Type -> m Type
f a
e
case Type
e of
Var{} -> Type -> m Type
f Type
e
Def'{} -> Type -> m Type
f Type
e
Proj{} -> Type -> m Type
f Type
e
Con{} -> Type -> m Type
f Type
e
Lit{} -> Type -> m Type
f Type
e
QuestionMark{} -> Type -> m Type
f Type
e
Underscore{} -> Type -> m Type
f Type
e
Dot ExprInfo
ei Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> Type -> Type
Dot ExprInfo
ei (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e
App AppInfo
ei Type
e NamedArg Type
arg -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< AppInfo -> Type -> NamedArg Type -> Type
App AppInfo
ei (Type -> NamedArg Type -> Type)
-> m Type -> m (NamedArg Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e m (NamedArg Type -> Type) -> m (NamedArg Type) -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamedArg Type -> m (NamedArg Type)
TraverseExprRecFn m
trav NamedArg Type
arg
WithApp ExprInfo
ei Type
e List1 Type
es -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> Type -> List1 Type -> Type
WithApp ExprInfo
ei (Type -> List1 Type -> Type) -> m Type -> m (List1 Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e m (List1 Type -> Type) -> m (List1 Type) -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> List1 Type -> m (List1 Type)
TraverseExprRecFn m
trav List1 Type
es
Lam ExprInfo
ei LamBinding
b Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> LamBinding -> Type -> Type
Lam ExprInfo
ei (LamBinding -> Type -> Type) -> m LamBinding -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> LamBinding -> m LamBinding
TraverseExprRecFn m
trav LamBinding
b m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
TraverseExprRecFn m
trav Type
e
AbsurdLam{} -> Type -> m Type
f Type
e
ExtendedLam ExprInfo
ei DefInfo
di Erased
re QName
x List1 Clause
cls -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> DefInfo -> Erased -> QName -> List1 Clause -> Type
ExtendedLam ExprInfo
ei DefInfo
di Erased
re QName
x (List1 Clause -> Type) -> m (List1 Clause) -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> List1 Clause -> m (List1 Clause)
TraverseExprRecFn m
trav List1 Clause
cls
Pi ExprInfo
ei Telescope1
tel Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> Telescope1 -> Type -> Type
Pi ExprInfo
ei (Telescope1 -> Type -> Type) -> m Telescope1 -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope1 -> m Telescope1
TraverseExprRecFn m
trav Telescope1
tel m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
TraverseExprRecFn m
trav Type
e
Generalized Set1 QName
s Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Set1 QName -> Type -> Type
Generalized Set1 QName
s (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e
Fun ExprInfo
ei Arg Type
arg Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> Arg Type -> Type -> Type
Fun ExprInfo
ei (Arg Type -> Type -> Type) -> m (Arg Type) -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg Type -> m (Arg Type)
TraverseExprRecFn m
trav Arg Type
arg m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
TraverseExprRecFn m
trav Type
e
Let ExprInfo
ei List1 LetBinding
bs Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprInfo -> List1 LetBinding -> Type -> Type
Let ExprInfo
ei (List1 LetBinding -> Type -> Type)
-> m (List1 LetBinding) -> m (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> List1 LetBinding -> m (List1 LetBinding)
TraverseExprRecFn m
trav List1 LetBinding
bs m (Type -> Type) -> m Type -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
TraverseExprRecFn m
trav Type
e
Rec RecInfo
ei RecordAssigns
bs -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< RecInfo -> RecordAssigns -> Type
Rec RecInfo
ei (RecordAssigns -> Type) -> m RecordAssigns -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> RecordAssigns -> m RecordAssigns
TraverseExprRecFn m
trav RecordAssigns
bs
RecUpdate RecInfo
ei Type
e Assigns
bs -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< RecInfo -> Type -> Assigns -> Type
RecUpdate RecInfo
ei (Type -> Assigns -> Type) -> m Type -> m (Assigns -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e m (Assigns -> Type) -> m Assigns -> m Type
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Assigns -> m Assigns
TraverseExprRecFn m
trav Assigns
bs
ScopedExpr ScopeInfo
sc Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ScopeInfo -> Type -> Type
ScopedExpr ScopeInfo
sc (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e
Quote{} -> Type -> m Type
f Type
e
QuoteTerm{} -> Type -> m Type
f Type
e
Unquote{} -> Type -> m Type
f Type
e
DontCare Type
e -> Type -> m Type
f (Type -> m Type) -> m Type -> m Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Type -> Type
DontCare (Type -> Type) -> m Type -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e
PatternSyn{} -> Type -> m Type
f Type
e
Macro{} -> Type -> m Type
f Type
e
instance ExprLike a => ExprLike (Arg a)
instance ExprLike a => ExprLike (Maybe a)
instance ExprLike a => ExprLike (Named x a)
instance ExprLike a => ExprLike (Ranged a)
instance ExprLike a => ExprLike [a]
instance ExprLike a => ExprLike (List1 a)
instance ExprLike a => ExprLike (TacticAttribute' a)
instance (ExprLike a, ExprLike b) => ExprLike (a, b) where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m (a, b)
recurseExpr Type -> m Type -> m Type
f (a
x, b
y) = (,) (a -> b -> (a, b)) -> m a -> m (b -> (a, b))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
x m (b -> (a, b)) -> m b -> m (a, b)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Type -> m Type -> m Type) -> b -> m b
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m b
recurseExpr Type -> m Type -> m Type
f b
y
instance ExprLike Void where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m Void
recurseExpr Type -> m Type -> m Type
f = Void -> m Void
forall a. Void -> a
absurd
instance ExprLike a => ExprLike (FieldAssignment' a) where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m (FieldAssignment' a)
recurseExpr = (a -> m a) -> FieldAssignment' a -> m (FieldAssignment' a)
forall a (f :: * -> *).
Functor f =>
(a -> f a) -> FieldAssignment' a -> f (FieldAssignment' a)
exprFieldA ((a -> m a) -> FieldAssignment' a -> m (FieldAssignment' a))
-> ((Type -> m Type -> m Type) -> a -> m a)
-> (Type -> m Type -> m Type)
-> FieldAssignment' a
-> m (FieldAssignment' a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr
instance (ExprLike a, ExprLike b) => ExprLike (Either a b) where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m (Either a b)
recurseExpr Type -> m Type -> m Type
f = (a -> m a) -> (b -> m b) -> Either a b -> m (Either a b)
forall (f :: * -> *) a c b d.
Functor f =>
(a -> f c) -> (b -> f d) -> Either a b -> f (Either c d)
traverseEither ((Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f)
((Type -> m Type -> m Type) -> b -> m b
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m b
recurseExpr Type -> m Type -> m Type
f)
instance ExprLike BindName where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m BindName
recurseExpr Type -> m Type -> m Type
f = BindName -> m BindName
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
instance ExprLike ModuleName where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m ModuleName
recurseExpr Type -> m Type -> m Type
f = ModuleName -> m ModuleName
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
instance ExprLike QName where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m QName
recurseExpr Type -> m Type -> m Type
_ = QName -> m QName
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
instance ExprLike LamBinding where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m LamBinding
recurseExpr Type -> m Type -> m Type
f LamBinding
e =
case LamBinding
e of
DomainFree TacticAttribute
t NamedArg Binder
x -> TacticAttribute -> NamedArg Binder -> LamBinding
DomainFree (TacticAttribute -> NamedArg Binder -> LamBinding)
-> m TacticAttribute -> m (NamedArg Binder -> LamBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> TacticAttribute -> m TacticAttribute
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m TacticAttribute
recurseExpr Type -> m Type -> m Type
f TacticAttribute
t m (NamedArg Binder -> LamBinding)
-> m (NamedArg Binder) -> m LamBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamedArg Binder -> m (NamedArg Binder)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure NamedArg Binder
x
DomainFull TypedBinding
bs -> TypedBinding -> LamBinding
DomainFull (TypedBinding -> LamBinding) -> m TypedBinding -> m LamBinding
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> TypedBinding -> m TypedBinding
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m TypedBinding
recurseExpr Type -> m Type -> m Type
f TypedBinding
bs
foldExpr :: forall m. FoldExprFn m LamBinding
foldExpr Type -> m
f LamBinding
e =
case LamBinding
e of
DomainFree TacticAttribute
t NamedArg Binder
_ -> (Type -> m) -> TacticAttribute -> m
forall m. FoldExprFn m TacticAttribute
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f TacticAttribute
t
DomainFull TypedBinding
bs -> (Type -> m) -> TypedBinding -> m
forall m. FoldExprFn m TypedBinding
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f TypedBinding
bs
traverseExpr :: forall (m :: * -> *). TraverseExprFn m LamBinding
traverseExpr Type -> m Type
f LamBinding
e =
case LamBinding
e of
DomainFree TacticAttribute
t NamedArg Binder
x -> TacticAttribute -> NamedArg Binder -> LamBinding
DomainFree (TacticAttribute -> NamedArg Binder -> LamBinding)
-> m TacticAttribute -> m (NamedArg Binder -> LamBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> TacticAttribute -> m TacticAttribute
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m TacticAttribute
traverseExpr Type -> m Type
f TacticAttribute
t m (NamedArg Binder -> LamBinding)
-> m (NamedArg Binder) -> m LamBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamedArg Binder -> m (NamedArg Binder)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure NamedArg Binder
x
DomainFull TypedBinding
bs -> TypedBinding -> LamBinding
DomainFull (TypedBinding -> LamBinding) -> m TypedBinding -> m LamBinding
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> TypedBinding -> m TypedBinding
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m TypedBinding
traverseExpr Type -> m Type
f TypedBinding
bs
instance ExprLike GeneralizeTelescope where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m GeneralizeTelescope
recurseExpr Type -> m Type -> m Type
f (GeneralizeTel Map QName Name
s Telescope
tel) = Map QName Name -> Telescope -> GeneralizeTelescope
GeneralizeTel Map QName Name
s (Telescope -> GeneralizeTelescope)
-> m Telescope -> m GeneralizeTelescope
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> Telescope -> m Telescope
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m Telescope
recurseExpr Type -> m Type -> m Type
f Telescope
tel
foldExpr :: forall m. FoldExprFn m GeneralizeTelescope
foldExpr Type -> m
f (GeneralizeTel Map QName Name
s Telescope
tel) = (Type -> m) -> Telescope -> m
forall m. FoldExprFn m Telescope
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f Telescope
tel
traverseExpr :: forall (m :: * -> *). TraverseExprFn m GeneralizeTelescope
traverseExpr Type -> m Type
f (GeneralizeTel Map QName Name
s Telescope
tel) = Map QName Name -> Telescope -> GeneralizeTelescope
GeneralizeTel Map QName Name
s (Telescope -> GeneralizeTelescope)
-> m Telescope -> m GeneralizeTelescope
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> Telescope -> m Telescope
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m Telescope
traverseExpr Type -> m Type
f Telescope
tel
instance ExprLike DataDefParams where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m DataDefParams
recurseExpr Type -> m Type -> m Type
f (DataDefParams Set Name
s [LamBinding]
tel) = Set Name -> [LamBinding] -> DataDefParams
DataDefParams Set Name
s ([LamBinding] -> DataDefParams)
-> m [LamBinding] -> m DataDefParams
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> [LamBinding] -> m [LamBinding]
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m [LamBinding]
recurseExpr Type -> m Type -> m Type
f [LamBinding]
tel
foldExpr :: forall m. FoldExprFn m DataDefParams
foldExpr Type -> m
f (DataDefParams Set Name
s [LamBinding]
tel) = (Type -> m) -> [LamBinding] -> m
forall m. FoldExprFn m [LamBinding]
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f [LamBinding]
tel
traverseExpr :: forall (m :: * -> *). TraverseExprFn m DataDefParams
traverseExpr Type -> m Type
f (DataDefParams Set Name
s [LamBinding]
tel) = Set Name -> [LamBinding] -> DataDefParams
DataDefParams Set Name
s ([LamBinding] -> DataDefParams)
-> m [LamBinding] -> m DataDefParams
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> [LamBinding] -> m [LamBinding]
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m [LamBinding]
traverseExpr Type -> m Type
f [LamBinding]
tel
instance ExprLike TypedBindingInfo where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m TypedBindingInfo
recurseExpr Type -> m Type -> m Type
f (TypedBindingInfo TacticAttribute
s Bool
t) = TacticAttribute -> Bool -> TypedBindingInfo
TypedBindingInfo (TacticAttribute -> Bool -> TypedBindingInfo)
-> m TacticAttribute -> m (Bool -> TypedBindingInfo)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> TacticAttribute -> m TacticAttribute
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m TacticAttribute
recurseExpr Type -> m Type -> m Type
f TacticAttribute
s m (Bool -> TypedBindingInfo) -> m Bool -> m TypedBindingInfo
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> m Bool
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
t
foldExpr :: forall m. FoldExprFn m TypedBindingInfo
foldExpr Type -> m
f (TypedBindingInfo TacticAttribute
s Bool
t) = (Type -> m) -> TacticAttribute -> m
forall m. FoldExprFn m TacticAttribute
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f TacticAttribute
s
traverseExpr :: forall (m :: * -> *). TraverseExprFn m TypedBindingInfo
traverseExpr Type -> m Type
f (TypedBindingInfo TacticAttribute
s Bool
t) = TacticAttribute -> Bool -> TypedBindingInfo
TypedBindingInfo (TacticAttribute -> Bool -> TypedBindingInfo)
-> m TacticAttribute -> m (Bool -> TypedBindingInfo)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> TacticAttribute -> m TacticAttribute
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m TacticAttribute
traverseExpr Type -> m Type
f TacticAttribute
s m (Bool -> TypedBindingInfo) -> m Bool -> m TypedBindingInfo
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> m Bool
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
t
instance ExprLike TypedBinding where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m TypedBinding
recurseExpr Type -> m Type -> m Type
f TypedBinding
e =
case TypedBinding
e of
TBind Range
r TypedBindingInfo
t List1 (NamedArg Binder)
xs Type
e -> Range
-> TypedBindingInfo
-> List1 (NamedArg Binder)
-> Type
-> TypedBinding
TBind Range
r (TypedBindingInfo
-> List1 (NamedArg Binder) -> Type -> TypedBinding)
-> m TypedBindingInfo
-> m (List1 (NamedArg Binder) -> Type -> TypedBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type)
-> TypedBindingInfo -> m TypedBindingInfo
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m TypedBindingInfo
recurseExpr Type -> m Type -> m Type
f TypedBindingInfo
t m (List1 (NamedArg Binder) -> Type -> TypedBinding)
-> m (List1 (NamedArg Binder)) -> m (Type -> TypedBinding)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> List1 (NamedArg Binder) -> m (List1 (NamedArg Binder))
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure List1 (NamedArg Binder)
xs m (Type -> TypedBinding) -> m Type -> m TypedBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Type -> m Type -> m Type) -> Type -> m Type
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m Type
recurseExpr Type -> m Type -> m Type
f Type
e
TLet Range
r List1 LetBinding
ds -> Range -> List1 LetBinding -> TypedBinding
TLet Range
r (List1 LetBinding -> TypedBinding)
-> m (List1 LetBinding) -> m TypedBinding
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type)
-> List1 LetBinding -> m (List1 LetBinding)
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m (List1 LetBinding)
recurseExpr Type -> m Type -> m Type
f List1 LetBinding
ds
foldExpr :: forall m. FoldExprFn m TypedBinding
foldExpr Type -> m
f TypedBinding
e =
case TypedBinding
e of
TBind Range
_ TypedBindingInfo
t List1 (NamedArg Binder)
_ Type
e -> (Type -> m) -> TypedBindingInfo -> m
forall m. FoldExprFn m TypedBindingInfo
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f TypedBindingInfo
t m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (Type -> m) -> Type -> m
forall m. FoldExprFn m Type
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f Type
e
TLet Range
_ List1 LetBinding
ds -> (Type -> m) -> List1 LetBinding -> m
forall m. FoldExprFn m (List1 LetBinding)
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f List1 LetBinding
ds
traverseExpr :: forall (m :: * -> *). TraverseExprFn m TypedBinding
traverseExpr Type -> m Type
f TypedBinding
e =
case TypedBinding
e of
TBind Range
r TypedBindingInfo
t List1 (NamedArg Binder)
xs Type
e -> Range
-> TypedBindingInfo
-> List1 (NamedArg Binder)
-> Type
-> TypedBinding
TBind Range
r (TypedBindingInfo
-> List1 (NamedArg Binder) -> Type -> TypedBinding)
-> m TypedBindingInfo
-> m (List1 (NamedArg Binder) -> Type -> TypedBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> TypedBindingInfo -> m TypedBindingInfo
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m TypedBindingInfo
traverseExpr Type -> m Type
f TypedBindingInfo
t m (List1 (NamedArg Binder) -> Type -> TypedBinding)
-> m (List1 (NamedArg Binder)) -> m (Type -> TypedBinding)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> List1 (NamedArg Binder) -> m (List1 (NamedArg Binder))
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure List1 (NamedArg Binder)
xs m (Type -> TypedBinding) -> m Type -> m TypedBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Type -> m Type) -> Type -> m Type
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m Type
traverseExpr Type -> m Type
f Type
e
TLet Range
r List1 LetBinding
ds -> Range -> List1 LetBinding -> TypedBinding
TLet Range
r (List1 LetBinding -> TypedBinding)
-> m (List1 LetBinding) -> m TypedBinding
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type) -> List1 LetBinding -> m (List1 LetBinding)
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m (List1 LetBinding)
traverseExpr Type -> m Type
f List1 LetBinding
ds
instance ExprLike LetBinding where
recurseExpr :: forall m. RecurseExprFn m LetBinding
recurseExpr :: forall (m :: * -> *). RecurseExprFn m LetBinding
recurseExpr Type -> m Type -> m Type
f LetBinding
e = do
let
recurse :: RecurseExprRecFn m
recurse :: RecurseExprRecFn m
recurse a
e = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
e
case LetBinding
e of
LetBind LetInfo
li ArgInfo
ai BindName
x Type
e Type
e' -> LetInfo -> ArgInfo -> BindName -> Type -> Type -> LetBinding
LetBind LetInfo
li ArgInfo
ai BindName
x (Type -> Type -> LetBinding) -> m Type -> m (Type -> LetBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e m (Type -> LetBinding) -> m Type -> m LetBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
recurse Type
e'
LetAxiom LetInfo
li ArgInfo
ai BindName
x Type
e -> LetInfo -> ArgInfo -> BindName -> Type -> LetBinding
LetAxiom LetInfo
li ArgInfo
ai BindName
x (Type -> LetBinding) -> m Type -> m LetBinding
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
recurse Type
e
LetPatBind LetInfo
li Pattern
p Type
e -> LetInfo -> Pattern -> Type -> LetBinding
LetPatBind LetInfo
li (Pattern -> Type -> LetBinding)
-> m Pattern -> m (Type -> LetBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern -> m Pattern
RecurseExprRecFn m
recurse Pattern
p m (Type -> LetBinding) -> m Type -> m LetBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
recurse Type
e
LetApply{} -> LetBinding -> m LetBinding
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure LetBinding
e
LetOpen{} -> LetBinding -> m LetBinding
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure LetBinding
e
LetDeclaredVariable BindName
_ -> LetBinding -> m LetBinding
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure LetBinding
e
foldExpr :: forall m. FoldExprFn m LetBinding
foldExpr :: forall m. FoldExprFn m LetBinding
foldExpr Type -> m
f LetBinding
e =
case LetBinding
e of
LetBind LetInfo
_ ArgInfo
_ BindName
_ Type
e Type
e' -> Type -> m
FoldExprRecFn m
fold Type
e m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e'
LetAxiom LetInfo
_ ArgInfo
_ BindName
_ Type
e -> Type -> m
FoldExprRecFn m
fold Type
e
LetPatBind LetInfo
_ Pattern
p Type
e -> Pattern -> m
FoldExprRecFn m
fold Pattern
p m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Type -> m
FoldExprRecFn m
fold Type
e
LetApply{} -> m
forall a. Monoid a => a
mempty
LetOpen{} -> m
forall a. Monoid a => a
mempty
LetDeclaredVariable BindName
_ -> m
forall a. Monoid a => a
mempty
where
fold :: FoldExprRecFn m
fold :: FoldExprRecFn m
fold a
e = (Type -> m) -> a -> m
forall m. FoldExprFn m a
forall a m. ExprLike a => FoldExprFn m a
foldExpr Type -> m
f a
e
traverseExpr :: forall m. TraverseExprFn m LetBinding
traverseExpr :: forall (m :: * -> *). TraverseExprFn m LetBinding
traverseExpr Type -> m Type
f LetBinding
e = do
let
trav :: TraverseExprRecFn m
trav :: TraverseExprRecFn m
trav a
e = (Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => TraverseExprFn m a
forall (m :: * -> *). TraverseExprFn m a
traverseExpr Type -> m Type
f a
e
case LetBinding
e of
LetBind LetInfo
li ArgInfo
ai BindName
x Type
e Type
e' -> LetInfo -> ArgInfo -> BindName -> Type -> Type -> LetBinding
LetBind LetInfo
li ArgInfo
ai BindName
x (Type -> Type -> LetBinding) -> m Type -> m (Type -> LetBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e m (Type -> LetBinding) -> m Type -> m LetBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
TraverseExprRecFn m
trav Type
e'
LetAxiom LetInfo
li ArgInfo
ai BindName
x Type
e -> LetInfo -> ArgInfo -> BindName -> Type -> LetBinding
LetAxiom LetInfo
li ArgInfo
ai BindName
x (Type -> LetBinding) -> m Type -> m LetBinding
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
TraverseExprRecFn m
trav Type
e
LetPatBind LetInfo
li Pattern
p Type
e -> LetInfo -> Pattern -> Type -> LetBinding
LetPatBind LetInfo
li (Pattern -> Type -> LetBinding)
-> m Pattern -> m (Type -> LetBinding)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern -> m Pattern
TraverseExprRecFn m
trav Pattern
p m (Type -> LetBinding) -> m Type -> m LetBinding
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
TraverseExprRecFn m
trav Type
e
LetApply{} -> LetBinding -> m LetBinding
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure LetBinding
e
LetOpen{} -> LetBinding -> m LetBinding
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure LetBinding
e
LetDeclaredVariable BindName
_ -> LetBinding -> m LetBinding
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure LetBinding
e
instance ExprLike a => ExprLike (Pattern' a) where
instance ExprLike a => ExprLike (Clause' a) where
recurseExpr :: forall m. RecurseExprFn m (Clause' a)
recurseExpr :: forall (m :: * -> *). RecurseExprFn m (Clause' a)
recurseExpr Type -> m Type -> m Type
f (Clause a
lhs [ProblemEq]
spats RHS
rhs WhereDeclarations
ds Bool
ca) = a -> [ProblemEq] -> RHS -> WhereDeclarations -> Bool -> Clause' a
forall lhs.
lhs
-> [ProblemEq] -> RHS -> WhereDeclarations -> Bool -> Clause' lhs
Clause (a -> [ProblemEq] -> RHS -> WhereDeclarations -> Bool -> Clause' a)
-> m a
-> m ([ProblemEq] -> RHS -> WhereDeclarations -> Bool -> Clause' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m a
RecurseExprRecFn m
rec a
lhs m ([ProblemEq] -> RHS -> WhereDeclarations -> Bool -> Clause' a)
-> m [ProblemEq]
-> m (RHS -> WhereDeclarations -> Bool -> Clause' a)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [ProblemEq] -> m [ProblemEq]
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure [ProblemEq]
spats m (RHS -> WhereDeclarations -> Bool -> Clause' a)
-> m RHS -> m (WhereDeclarations -> Bool -> Clause' a)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> RHS -> m RHS
RecurseExprRecFn m
rec RHS
rhs m (WhereDeclarations -> Bool -> Clause' a)
-> m WhereDeclarations -> m (Bool -> Clause' a)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> WhereDeclarations -> m WhereDeclarations
RecurseExprRecFn m
rec WhereDeclarations
ds m (Bool -> Clause' a) -> m Bool -> m (Clause' a)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> m Bool
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
ca
where
rec :: RecurseExprRecFn m
rec :: RecurseExprRecFn m
rec = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f
instance ExprLike RHS where
recurseExpr :: forall m. RecurseExprFn m RHS
recurseExpr :: forall (m :: * -> *). RecurseExprFn m RHS
recurseExpr Type -> m Type -> m Type
f RHS
rhs =
case RHS
rhs of
RHS Type
e Maybe Expr
c -> Type -> Maybe Expr -> RHS
RHS (Type -> Maybe Expr -> RHS) -> m Type -> m (Maybe Expr -> RHS)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
rec Type
e m (Maybe Expr -> RHS) -> m (Maybe Expr) -> m RHS
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe Expr -> m (Maybe Expr)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe Expr
c
AbsurdRHS{} -> RHS -> m RHS
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure RHS
rhs
WithRHS QName
x List1 WithExpr
es List1 Clause
cs -> QName -> List1 WithExpr -> List1 Clause -> RHS
WithRHS QName
x (List1 WithExpr -> List1 Clause -> RHS)
-> m (List1 WithExpr) -> m (List1 Clause -> RHS)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> List1 WithExpr -> m (List1 WithExpr)
RecurseExprRecFn m
rec List1 WithExpr
es m (List1 Clause -> RHS) -> m (List1 Clause) -> m RHS
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> List1 Clause -> m (List1 Clause)
RecurseExprRecFn m
rec List1 Clause
cs
RewriteRHS [RewriteEqn]
xes [ProblemEq]
spats RHS
rhs WhereDeclarations
ds -> [RewriteEqn] -> [ProblemEq] -> RHS -> WhereDeclarations -> RHS
RewriteRHS ([RewriteEqn] -> [ProblemEq] -> RHS -> WhereDeclarations -> RHS)
-> m [RewriteEqn]
-> m ([ProblemEq] -> RHS -> WhereDeclarations -> RHS)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [RewriteEqn] -> m [RewriteEqn]
RecurseExprRecFn m
rec [RewriteEqn]
xes m ([ProblemEq] -> RHS -> WhereDeclarations -> RHS)
-> m [ProblemEq] -> m (RHS -> WhereDeclarations -> RHS)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [ProblemEq] -> m [ProblemEq]
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure [ProblemEq]
spats m (RHS -> WhereDeclarations -> RHS)
-> m RHS -> m (WhereDeclarations -> RHS)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> RHS -> m RHS
RecurseExprRecFn m
rec RHS
rhs m (WhereDeclarations -> RHS) -> m WhereDeclarations -> m RHS
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> WhereDeclarations -> m WhereDeclarations
RecurseExprRecFn m
rec WhereDeclarations
ds
where
rec :: RecurseExprRecFn m
rec :: RecurseExprRecFn m
rec a
e = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
e
instance (ExprLike qn, ExprLike nm, ExprLike p, ExprLike e) => ExprLike (RewriteEqn' qn nm p e) where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m (RewriteEqn' qn nm p e)
recurseExpr Type -> m Type -> m Type
f = \case
Rewrite List1 (qn, e)
es -> List1 (qn, e) -> RewriteEqn' qn nm p e
forall qn nm p e. List1 (qn, e) -> RewriteEqn' qn nm p e
Rewrite (List1 (qn, e) -> RewriteEqn' qn nm p e)
-> m (List1 (qn, e)) -> m (RewriteEqn' qn nm p e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> List1 (qn, e) -> m (List1 (qn, e))
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m (List1 (qn, e))
recurseExpr Type -> m Type -> m Type
f List1 (qn, e)
es
Invert qn
qn List1 (Named nm (p, e))
pes -> qn -> List1 (Named nm (p, e)) -> RewriteEqn' qn nm p e
forall qn nm p e.
qn -> List1 (Named nm (p, e)) -> RewriteEqn' qn nm p e
Invert (qn -> List1 (Named nm (p, e)) -> RewriteEqn' qn nm p e)
-> m qn -> m (List1 (Named nm (p, e)) -> RewriteEqn' qn nm p e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> qn -> m qn
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m qn
recurseExpr Type -> m Type -> m Type
f qn
qn m (List1 (Named nm (p, e)) -> RewriteEqn' qn nm p e)
-> m (List1 (Named nm (p, e))) -> m (RewriteEqn' qn nm p e)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Type -> m Type -> m Type)
-> List1 (Named nm (p, e)) -> m (List1 (Named nm (p, e)))
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m (List1 (Named nm (p, e)))
recurseExpr Type -> m Type -> m Type
f List1 (Named nm (p, e))
pes
LeftLet List1 (p, e)
pes -> List1 (p, e) -> RewriteEqn' qn nm p e
forall qn nm p e. List1 (p, e) -> RewriteEqn' qn nm p e
LeftLet (List1 (p, e) -> RewriteEqn' qn nm p e)
-> m (List1 (p, e)) -> m (RewriteEqn' qn nm p e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> List1 (p, e) -> m (List1 (p, e))
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m (List1 (p, e))
recurseExpr Type -> m Type -> m Type
f List1 (p, e)
pes
instance ExprLike WhereDeclarations where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m WhereDeclarations
recurseExpr Type -> m Type -> m Type
f (WhereDecls Maybe ModuleName
a Bool
b Maybe Declaration
c) = Maybe ModuleName -> Bool -> Maybe Declaration -> WhereDeclarations
WhereDecls Maybe ModuleName
a Bool
b (Maybe Declaration -> WhereDeclarations)
-> m (Maybe Declaration) -> m WhereDeclarations
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type)
-> Maybe Declaration -> m (Maybe Declaration)
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m (Maybe Declaration)
recurseExpr Type -> m Type -> m Type
f Maybe Declaration
c
instance ExprLike ModuleApplication where
recurseExpr :: forall m. RecurseExprFn m ModuleApplication
recurseExpr :: forall (m :: * -> *). RecurseExprFn m ModuleApplication
recurseExpr Type -> m Type -> m Type
f ModuleApplication
a =
case ModuleApplication
a of
SectionApp Telescope
tel ModuleName
m [NamedArg Type]
es -> Telescope -> ModuleName -> [NamedArg Type] -> ModuleApplication
SectionApp (Telescope -> ModuleName -> [NamedArg Type] -> ModuleApplication)
-> m Telescope
-> m (ModuleName -> [NamedArg Type] -> ModuleApplication)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope -> m Telescope
RecurseExprRecFn m
rec Telescope
tel m (ModuleName -> [NamedArg Type] -> ModuleApplication)
-> m ModuleName -> m ([NamedArg Type] -> ModuleApplication)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ModuleName -> m ModuleName
RecurseExprRecFn m
rec ModuleName
m m ([NamedArg Type] -> ModuleApplication)
-> m [NamedArg Type] -> m ModuleApplication
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [NamedArg Type] -> m [NamedArg Type]
RecurseExprRecFn m
rec [NamedArg Type]
es
RecordModuleInstance{} -> ModuleApplication -> m ModuleApplication
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ModuleApplication
a
where
rec :: RecurseExprRecFn m
rec :: RecurseExprRecFn m
rec a
e = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
e
instance ExprLike Pragma where
recurseExpr :: forall m. RecurseExprFn m Pragma
recurseExpr :: forall (m :: * -> *). RecurseExprFn m Pragma
recurseExpr Type -> m Type -> m Type
f Pragma
p =
case Pragma
p of
BuiltinPragma RString
s ResolvedName
x -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
OptionsPragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
BuiltinNoDefPragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
RewritePragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
CompilePragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
StaticPragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
InjectivePragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
InjectiveForInferencePragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
InlinePragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
EtaPragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
NotProjectionLikePragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
OverlapPragma{} -> Pragma -> m Pragma
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Pragma
p
DisplayPragma QName
f [NamedArg Pattern]
xs Type
e -> QName -> [NamedArg Pattern] -> Type -> Pragma
DisplayPragma QName
f ([NamedArg Pattern] -> Type -> Pragma)
-> m [NamedArg Pattern] -> m (Type -> Pragma)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [NamedArg Pattern] -> m [NamedArg Pattern]
RecurseExprRecFn m
rec [NamedArg Pattern]
xs m (Type -> Pragma) -> m Type -> m Pragma
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
rec Type
e
where
rec :: RecurseExprRecFn m
rec :: RecurseExprRecFn m
rec a
e = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
e
instance ExprLike LHS where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m LHS
recurseExpr Type -> m Type -> m Type
f (LHS LHSInfo
i LHSCore
p) = LHSInfo -> LHSCore -> LHS
LHS LHSInfo
i (LHSCore -> LHS) -> m LHSCore -> m LHS
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type) -> LHSCore -> m LHSCore
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m LHSCore
recurseExpr Type -> m Type -> m Type
f LHSCore
p
instance ExprLike a => ExprLike (LHSCore' a) where
instance ExprLike a => ExprLike (WithHiding a) where
instance ExprLike SpineLHS where
recurseExpr :: forall (m :: * -> *). RecurseExprFn m SpineLHS
recurseExpr Type -> m Type -> m Type
f (SpineLHS LHSInfo
i QName
x [NamedArg Pattern]
ps) = LHSInfo -> QName -> [NamedArg Pattern] -> SpineLHS
SpineLHS LHSInfo
i QName
x ([NamedArg Pattern] -> SpineLHS)
-> m [NamedArg Pattern] -> m SpineLHS
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> m Type -> m Type)
-> [NamedArg Pattern] -> m [NamedArg Pattern]
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m [NamedArg Pattern]
recurseExpr Type -> m Type -> m Type
f [NamedArg Pattern]
ps
instance ExprLike Declaration where
recurseExpr :: forall m. RecurseExprFn m Declaration
recurseExpr :: forall (m :: * -> *). RecurseExprFn m Declaration
recurseExpr Type -> m Type -> m Type
f Declaration
d =
case Declaration
d of
Axiom KindOfName
a DefInfo
d ArgInfo
i Maybe (List1 Occurrence)
mp QName
x Type
e -> KindOfName
-> DefInfo
-> ArgInfo
-> Maybe (List1 Occurrence)
-> QName
-> Type
-> Declaration
Axiom KindOfName
a DefInfo
d ArgInfo
i Maybe (List1 Occurrence)
mp QName
x (Type -> Declaration) -> m Type -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
rec Type
e
Generalize Set QName
s DefInfo
i ArgInfo
j QName
x Type
e -> Set QName -> DefInfo -> ArgInfo -> QName -> Type -> Declaration
Generalize Set QName
s DefInfo
i ArgInfo
j QName
x (Type -> Declaration) -> m Type -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
rec Type
e
Field DefInfo
i QName
x Arg Type
e -> DefInfo -> QName -> Arg Type -> Declaration
Field DefInfo
i QName
x (Arg Type -> Declaration) -> m (Arg Type) -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg Type -> m (Arg Type)
RecurseExprRecFn m
rec Arg Type
e
Primitive DefInfo
i QName
x Arg Type
e -> DefInfo -> QName -> Arg Type -> Declaration
Primitive DefInfo
i QName
x (Arg Type -> Declaration) -> m (Arg Type) -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Arg Type -> m (Arg Type)
RecurseExprRecFn m
rec Arg Type
e
Mutual MutualInfo
i [Declaration]
ds -> MutualInfo -> [Declaration] -> Declaration
Mutual MutualInfo
i ([Declaration] -> Declaration) -> m [Declaration] -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Declaration] -> m [Declaration]
RecurseExprRecFn m
rec [Declaration]
ds
Section Range
i Erased
e ModuleName
m GeneralizeTelescope
tel [Declaration]
ds -> Range
-> Erased
-> ModuleName
-> GeneralizeTelescope
-> [Declaration]
-> Declaration
Section Range
i Erased
e ModuleName
m (GeneralizeTelescope -> [Declaration] -> Declaration)
-> m GeneralizeTelescope -> m ([Declaration] -> Declaration)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> GeneralizeTelescope -> m GeneralizeTelescope
RecurseExprRecFn m
rec GeneralizeTelescope
tel m ([Declaration] -> Declaration)
-> m [Declaration] -> m Declaration
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [Declaration] -> m [Declaration]
RecurseExprRecFn m
rec [Declaration]
ds
Apply ModuleInfo
i Erased
e ModuleName
m ModuleApplication
a ScopeCopyInfo
ci ImportDirective
d -> (\ModuleApplication
a -> ModuleInfo
-> Erased
-> ModuleName
-> ModuleApplication
-> ScopeCopyInfo
-> ImportDirective
-> Declaration
Apply ModuleInfo
i Erased
e ModuleName
m ModuleApplication
a ScopeCopyInfo
ci ImportDirective
d) (ModuleApplication -> Declaration)
-> m ModuleApplication -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ModuleApplication -> m ModuleApplication
RecurseExprRecFn m
rec ModuleApplication
a
Import{} -> Declaration -> m Declaration
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Declaration
d
Pragma Range
i Pragma
p -> Range -> Pragma -> Declaration
Pragma Range
i (Pragma -> Declaration) -> m Pragma -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pragma -> m Pragma
RecurseExprRecFn m
rec Pragma
p
Open{} -> Declaration -> m Declaration
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Declaration
d
FunDef DefInfo
i QName
f [Clause]
cs -> DefInfo -> QName -> [Clause] -> Declaration
FunDef DefInfo
i QName
f ([Clause] -> Declaration) -> m [Clause] -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Clause] -> m [Clause]
RecurseExprRecFn m
rec [Clause]
cs
DataSig DefInfo
i Erased
er QName
d GeneralizeTelescope
tel Type
e -> DefInfo
-> Erased -> QName -> GeneralizeTelescope -> Type -> Declaration
DataSig DefInfo
i Erased
er QName
d (GeneralizeTelescope -> Type -> Declaration)
-> m GeneralizeTelescope -> m (Type -> Declaration)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> GeneralizeTelescope -> m GeneralizeTelescope
RecurseExprRecFn m
rec GeneralizeTelescope
tel m (Type -> Declaration) -> m Type -> m Declaration
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
rec Type
e
DataDef DefInfo
i QName
d UniverseCheck
uc DataDefParams
bs [Declaration]
cs -> DefInfo
-> QName
-> UniverseCheck
-> DataDefParams
-> [Declaration]
-> Declaration
DataDef DefInfo
i QName
d UniverseCheck
uc (DataDefParams -> [Declaration] -> Declaration)
-> m DataDefParams -> m ([Declaration] -> Declaration)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DataDefParams -> m DataDefParams
RecurseExprRecFn m
rec DataDefParams
bs m ([Declaration] -> Declaration)
-> m [Declaration] -> m Declaration
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [Declaration] -> m [Declaration]
RecurseExprRecFn m
rec [Declaration]
cs
RecSig DefInfo
i Erased
er QName
r GeneralizeTelescope
tel Type
e -> DefInfo
-> Erased -> QName -> GeneralizeTelescope -> Type -> Declaration
RecSig DefInfo
i Erased
er QName
r (GeneralizeTelescope -> Type -> Declaration)
-> m GeneralizeTelescope -> m (Type -> Declaration)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> GeneralizeTelescope -> m GeneralizeTelescope
RecurseExprRecFn m
rec GeneralizeTelescope
tel m (Type -> Declaration) -> m Type -> m Declaration
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
rec Type
e
RecDef DefInfo
i QName
r UniverseCheck
uc RecordDirectives
dir DataDefParams
bs Type
e [Declaration]
ds -> DefInfo
-> QName
-> UniverseCheck
-> RecordDirectives
-> DataDefParams
-> Type
-> [Declaration]
-> Declaration
RecDef DefInfo
i QName
r UniverseCheck
uc RecordDirectives
dir (DataDefParams -> Type -> [Declaration] -> Declaration)
-> m DataDefParams -> m (Type -> [Declaration] -> Declaration)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DataDefParams -> m DataDefParams
RecurseExprRecFn m
rec DataDefParams
bs m (Type -> [Declaration] -> Declaration)
-> m Type -> m ([Declaration] -> Declaration)
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
RecurseExprRecFn m
rec Type
e m ([Declaration] -> Declaration)
-> m [Declaration] -> m Declaration
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> [Declaration] -> m [Declaration]
RecurseExprRecFn m
rec [Declaration]
ds
PatternSynDef QName
f [WithHiding BindName]
xs Pattern' Void
p -> QName -> [WithHiding BindName] -> Pattern' Void -> Declaration
PatternSynDef QName
f [WithHiding BindName]
xs (Pattern' Void -> Declaration)
-> m (Pattern' Void) -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern' Void -> m (Pattern' Void)
RecurseExprRecFn m
rec Pattern' Void
p
UnquoteDecl MutualInfo
i [DefInfo]
is [QName]
xs Type
e -> MutualInfo -> [DefInfo] -> [QName] -> Type -> Declaration
UnquoteDecl MutualInfo
i [DefInfo]
is [QName]
xs (Type -> Declaration) -> m Type -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
rec Type
e
UnquoteDef [DefInfo]
i [QName]
xs Type
e -> [DefInfo] -> [QName] -> Type -> Declaration
UnquoteDef [DefInfo]
i [QName]
xs (Type -> Declaration) -> m Type -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
rec Type
e
UnquoteData [DefInfo]
i QName
xs UniverseCheck
uc [DefInfo]
j [QName]
cs Type
e -> [DefInfo]
-> QName
-> UniverseCheck
-> [DefInfo]
-> [QName]
-> Type
-> Declaration
UnquoteData [DefInfo]
i QName
xs UniverseCheck
uc [DefInfo]
j [QName]
cs (Type -> Declaration) -> m Type -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
RecurseExprRecFn m
rec Type
e
ScopedDecl ScopeInfo
s [Declaration]
ds -> ScopeInfo -> [Declaration] -> Declaration
ScopedDecl ScopeInfo
s ([Declaration] -> Declaration) -> m [Declaration] -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Declaration] -> m [Declaration]
RecurseExprRecFn m
rec [Declaration]
ds
UnfoldingDecl Range
r [QName]
ds -> Range -> [QName] -> Declaration
UnfoldingDecl Range
r ([QName] -> Declaration) -> m [QName] -> m Declaration
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [QName] -> m [QName]
RecurseExprRecFn m
rec [QName]
ds
where
rec :: RecurseExprRecFn m
rec :: RecurseExprRecFn m
rec a
e = (Type -> m Type -> m Type) -> a -> m a
forall a (m :: * -> *). ExprLike a => RecurseExprFn m a
forall (m :: * -> *). RecurseExprFn m a
recurseExpr Type -> m Type -> m Type
f a
e
type KName = WithKind QName
class DeclaredNames a where
declaredNames :: Collection KName m => a -> m
default declaredNames
:: (Foldable t, DeclaredNames b, t b ~ a)
=> Collection KName m => a -> m
declaredNames = (b -> m) -> t b -> m
forall m a. Monoid m => (a -> m) -> t a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap b -> m
forall m. Collection KName m => b -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames
instance DeclaredNames a => DeclaredNames [a]
instance DeclaredNames a => DeclaredNames (List1 a)
instance DeclaredNames a => DeclaredNames (Maybe a)
instance DeclaredNames a => DeclaredNames (Arg a)
instance DeclaredNames a => DeclaredNames (Named name a)
instance DeclaredNames a => DeclaredNames (FieldAssignment' a)
instance (DeclaredNames a, DeclaredNames b) => DeclaredNames (Either a b) where
declaredNames :: forall m. Collection KName m => Either a b -> m
declaredNames = (a -> m) -> (b -> m) -> Either a b -> m
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either a -> m
forall m. Collection KName m => a -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames b -> m
forall m. Collection KName m => b -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames
instance (DeclaredNames a, DeclaredNames b) => DeclaredNames (a,b) where
declaredNames :: forall m. Collection KName m => (a, b) -> m
declaredNames (a
a,b
b) = a -> m
forall m. Collection KName m => a -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames a
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> b -> m
forall m. Collection KName m => b -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames b
b
instance DeclaredNames KName where
declaredNames :: forall m. Collection KName m => KName -> m
declaredNames = KName -> m
forall el coll. Singleton el coll => el -> coll
singleton
instance DeclaredNames RecordDirectives where
declaredNames :: forall m. Collection KName m => RecordDirectives -> m
declaredNames (RecordDirectives Maybe (Ranged Induction)
i Maybe (Ranged HasEta0)
_ Maybe Range
_ RecordConName
c) = m
kc where
kc :: m
kc = case RecordConName
c of
NamedRecCon QName
c -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KName -> m) -> KName -> m
forall a b. (a -> b) -> a -> b
$ KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
k QName
c
FreshRecCon{} -> m
forall a. Monoid a => a
mempty
k :: KindOfName
k = KindOfName
-> (Ranged Induction -> KindOfName)
-> Maybe (Ranged Induction)
-> KindOfName
forall b a. b -> (a -> b) -> Maybe a -> b
maybe KindOfName
ConName (Induction -> KindOfName
conKindOfName (Induction -> KindOfName)
-> (Ranged Induction -> Induction)
-> Ranged Induction
-> KindOfName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ranged Induction -> Induction
forall a. Ranged a -> a
rangedThing) Maybe (Ranged Induction)
i
instance DeclaredNames Declaration where
declaredNames :: forall m. Collection KName m => Declaration -> m
declaredNames = \case
Axiom KindOfName
_ DefInfo
di ArgInfo
_ Maybe (List1 Occurrence)
_ QName
q Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KName -> m) -> (KindOfName -> KName) -> KindOfName -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
`WithKind` QName
q) (KindOfName -> m) -> KindOfName -> m
forall a b. (a -> b) -> a -> b
$
case DefInfo -> IsMacro
forall t. DefInfo' t -> IsMacro
defMacro DefInfo
di of
IsMacro
MacroDef -> KindOfName
MacroName
IsMacro
NotMacroDef -> KindOfName
AxiomName
Generalize Set QName
_ DefInfo
_ ArgInfo
_ QName
q Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
GeneralizeName QName
q)
Field DefInfo
_ QName
q Arg Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
FldName QName
q)
Primitive DefInfo
_ QName
q Arg Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
PrimName QName
q)
Mutual MutualInfo
_ [Declaration]
decls -> [Declaration] -> m
forall m. Collection KName m => [Declaration] -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames [Declaration]
decls
DataSig DefInfo
_ Erased
_ QName
q GeneralizeTelescope
_ Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
DataName QName
q)
DataDef DefInfo
_ QName
q UniverseCheck
_ DataDefParams
_ [Declaration]
decls -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
DataName QName
q) m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (Declaration -> m) -> [Declaration] -> m
forall m a. Monoid m => (a -> m) -> [a] -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Declaration -> m
con [Declaration]
decls
RecSig DefInfo
_ Erased
_ QName
q GeneralizeTelescope
_ Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
RecName QName
q)
RecDef DefInfo
_ QName
q UniverseCheck
_ RecordDirectives
dir DataDefParams
_ Type
_ [Declaration]
decls -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
RecName QName
q) m -> m -> m
forall a. Semigroup a => a -> a -> a
<> RecordDirectives -> m
forall m. Collection KName m => RecordDirectives -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames RecordDirectives
dir m -> m -> m
forall a. Semigroup a => a -> a -> a
<> [Declaration] -> m
forall m. Collection KName m => [Declaration] -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames [Declaration]
decls
PatternSynDef QName
q [WithHiding BindName]
_ Pattern' Void
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
PatternSynName QName
q)
UnquoteDecl MutualInfo
_ [DefInfo]
_ [QName]
qs Type
_ -> [KName] -> m
forall el coll. Collection el coll => [el] -> coll
fromList ([KName] -> m) -> [KName] -> m
forall a b. (a -> b) -> a -> b
$ (QName -> KName) -> [QName] -> [KName]
forall a b. (a -> b) -> [a] -> [b]
map (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
OtherDefName) [QName]
qs
UnquoteDef [DefInfo]
_ [QName]
qs Type
_ -> [KName] -> m
forall el coll. Collection el coll => [el] -> coll
fromList ([KName] -> m) -> [KName] -> m
forall a b. (a -> b) -> a -> b
$ (QName -> KName) -> [QName] -> [KName]
forall a b. (a -> b) -> [a] -> [b]
map (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
FunName) [QName]
qs
UnquoteData [DefInfo]
_ QName
d UniverseCheck
_ [DefInfo]
_ [QName]
cs Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
DataName QName
d) m -> m -> m
forall a. Semigroup a => a -> a -> a
<> [KName] -> m
forall el coll. Collection el coll => [el] -> coll
fromList ((QName -> KName) -> [QName] -> [KName]
forall a b. (a -> b) -> [a] -> [b]
map (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
ConName) [QName]
cs)
FunDef DefInfo
_ QName
q [Clause]
cls -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
FunName QName
q) m -> m -> m
forall a. Semigroup a => a -> a -> a
<> [Clause] -> m
forall m. Collection KName m => [Clause] -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames [Clause]
cls
ScopedDecl ScopeInfo
_ [Declaration]
decls -> [Declaration] -> m
forall m. Collection KName m => [Declaration] -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames [Declaration]
decls
Section Range
_ Erased
_ ModuleName
_ GeneralizeTelescope
_ [Declaration]
decls -> [Declaration] -> m
forall m. Collection KName m => [Declaration] -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames [Declaration]
decls
Pragma Range
_ Pragma
pragma -> Pragma -> m
forall m. Collection KName m => Pragma -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames Pragma
pragma
Apply{} -> m
forall a. Monoid a => a
mempty
Import{} -> m
forall a. Monoid a => a
mempty
Open{} -> m
forall a. Monoid a => a
mempty
UnfoldingDecl{} -> m
forall a. Monoid a => a
mempty
where
con :: Declaration -> m
con = \case
Axiom KindOfName
_ DefInfo
_ ArgInfo
_ Maybe (List1 Occurrence)
_ QName
q Type
_ -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KName -> m) -> KName -> m
forall a b. (a -> b) -> a -> b
$ KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
ConName QName
q
Declaration
_ -> m
forall a. HasCallStack => a
__IMPOSSIBLE__
instance DeclaredNames Pragma where
declaredNames :: forall m. Collection KName m => Pragma -> m
declaredNames = \case
BuiltinNoDefPragma RString
_b KindOfName
kind QName
x -> KName -> m
forall el coll. Singleton el coll => el -> coll
singleton (KName -> m) -> KName -> m
forall a b. (a -> b) -> a -> b
$ KindOfName -> QName -> KName
forall a. KindOfName -> a -> WithKind a
WithKind KindOfName
kind QName
x
BuiltinPragma{} -> m
forall a. Monoid a => a
mempty
CompilePragma{} -> m
forall a. Monoid a => a
mempty
RewritePragma{} -> m
forall a. Monoid a => a
mempty
StaticPragma{} -> m
forall a. Monoid a => a
mempty
EtaPragma{} -> m
forall a. Monoid a => a
mempty
InjectivePragma{} -> m
forall a. Monoid a => a
mempty
InjectiveForInferencePragma{} -> m
forall a. Monoid a => a
mempty
InlinePragma{} -> m
forall a. Monoid a => a
mempty
NotProjectionLikePragma{} -> m
forall a. Monoid a => a
mempty
DisplayPragma{} -> m
forall a. Monoid a => a
mempty
OptionsPragma{} -> m
forall a. Monoid a => a
mempty
OverlapPragma{} -> m
forall a. Monoid a => a
mempty
instance DeclaredNames Clause where
declaredNames :: forall m. Collection KName m => Clause -> m
declaredNames (Clause LHS
_ [ProblemEq]
_ RHS
rhs WhereDeclarations
decls Bool
_) = RHS -> m
forall m. Collection KName m => RHS -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames RHS
rhs m -> m -> m
forall a. Semigroup a => a -> a -> a
<> WhereDeclarations -> m
forall m. Collection KName m => WhereDeclarations -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames WhereDeclarations
decls
instance DeclaredNames WhereDeclarations where
declaredNames :: forall m. Collection KName m => WhereDeclarations -> m
declaredNames (WhereDecls Maybe ModuleName
_ Bool
_ Maybe Declaration
ds) = Maybe Declaration -> m
forall m. Collection KName m => Maybe Declaration -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames Maybe Declaration
ds
instance DeclaredNames RHS where
declaredNames :: forall m. Collection KName m => RHS -> m
declaredNames = \case
RHS Type
_ Maybe Expr
_ -> m
forall a. Monoid a => a
mempty
RHS
AbsurdRHS -> m
forall a. Monoid a => a
mempty
WithRHS QName
_q List1 WithExpr
_es List1 Clause
cls -> List1 Clause -> m
forall m. Collection KName m => List1 Clause -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames List1 Clause
cls
RewriteRHS [RewriteEqn]
_qes [ProblemEq]
_ RHS
rhs WhereDeclarations
cls -> RHS -> m
forall m. Collection KName m => RHS -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames RHS
rhs m -> m -> m
forall a. Semigroup a => a -> a -> a
<> WhereDeclarations -> m
forall m. Collection KName m => WhereDeclarations -> m
forall a m. (DeclaredNames a, Collection KName m) => a -> m
declaredNames WhereDeclarations
cls