Features
By default, all of the following Agda examples are implicitly prefixed (if necessary) with the following snippet.
open import Haskell.Prelude
Data & Type Declarations
Types
Creating a type synonym using the type
keyword requires only a simple declaration in Agda.
Agda:
Entry = Int × List String
{-# COMPILE AGDA2HS Entry #-}
Haskell:
type Entry = (Int, [String])
Datatypes
Standard data type declarations have a simple equivalent in Agda.
Agda:
data Nat : Set where
Zero : Nat
Suc : Nat → Nat
{-# COMPILE AGDA2HS Nat #-}
Haskell:
data Nat = Zero | Suc Nat
You can also use polymorphic types in the data declarations.
Agda:
data Tree (a : Set) : Set where
Leaf : a → Tree a
Branch : a → Tree a → Tree a → Tree a
{-# COMPILE AGDA2HS Tree #-}
Haskell:
data Tree a = Leaf a
| Branch a (Tree a) (Tree a)
UNSUPPORTED: term-indexed datatypes
Records
Data definitions with fields are represented by records on the Agda side.
Agda:
record Citation : Set where
field
id : Int
author : String
title : String
url : String
year : Int
open Citation public
{-# COMPILE AGDA2HS Citation #-}
Haskell:
data Citation = Citation{id :: Int, author :: String,
title :: String, url :: String, year :: Int}
Newtypes
Data declaration using the newtype
keyword can be created by adding a newtype
annotation to the compile pragma.
Agda:
-- data newtype
data Indexed (a : Set) : Set where
MkIndexed : Int × a → Indexed a
{-# COMPILE AGDA2HS Indexed newtype #-}
-- data newtype with deriving
data Pair (a b : Set) : Set where
MkPair : a × b → Pair a b
{-# COMPILE AGDA2HS Pair newtype deriving ( Show, Eq ) #-}
-- record newtype
record Identity (a : Set) : Set where
constructor MkIdentity
field
runIdentity : a
open Identity public
{-# COMPILE AGDA2HS Identity newtype #-}
-- record newtype with erased proof
record Equal (a : Set) : Set where
constructor MkEqual
field
pair : a × a
@0 proof : (fst pair) ≡ (snd pair)
open Equal public
{-# COMPILE AGDA2HS Equal newtype #-}
Haskell:
-- data newtype
newtype Indexed a = MkIndexed (Int, a)
-- data newtype with deriving
newtype Pair a b = MkPair (a, b)
deriving (Show, Eq)
-- record newtype
newtype Identity a = MkIdentity{runIdentity :: a}
-- record newtype with erased proof
newtype Equal a = MkEqual{pair :: (a, a)}
Unfortunately, Agda does not allow the constructor name to be the same as the data/record name.
However, it is possible to achieve this with Agda2HS if you do not explicitly add a constructor name to a record definition (this requires the use of record { ... }
syntax on the Agda side):
record Duo (a : Set) : Set where
field
duo : a × a
open Duo public
{-# COMPILE AGDA2HS Duo newtype #-}
createDuo : a → a → Duo a
createDuo a b = record { duo = a , b }
{-# COMPILE AGDA2HS createDuo #-}
newtype Duo a = Duo{duo :: (a, a)}
createDuo :: a -> a -> Duo a
createDuo a b = Duo (a, b)
Pattern Matching on Datatype Values
Agda:
{-# FOREIGN AGDA2HS {-# LANGUAGE LambdaCase #-} #-}
negate : Bool → Bool
negate True = False
negate False = True
negate' : Bool → Bool
negate' x = case x of λ where
True → False
False → True
negate'' : Bool → Bool
negate'' = λ where
True -> False
False -> True
{-# LANGUAGE LambdaCase #-}
negate :: Bool -> Bool
negate True = False
negate False = True
negate' :: Bool -> Bool
negate' x = case x of
True -> False
False -> True
negate'' :: Bool -> Bool
negate'' = \case
True -> False
False -> True
Flow Control
Agda2HS provides native support for the Haskell if_then_else_
and case_of_
constructs.
Agda:
ifThenElse : Int → String
ifThenElse n = if n >= 10 then "big" else "small"
{-# COMPILE AGDA2HS ifThenElse #-}
mhead : List a → Maybe a
mhead xs = case xs of λ where
[] → Nothing
(x ∷ _) → Just x
{-# COMPILE AGDA2HS mhead #-}
Haskell:
ifThenElse :: Int -> String
ifThenElse n = if n >= 10 then "big" else "small"
mhead :: [a] -> Maybe a
mhead xs
= case xs of
[] -> Nothing
x : _ -> Just x
It is NOT possible to partially apply these two constructs. This means that you must explicitly write
λ x → if x then 2 else 3
instead ofif_then 2 else 3
. (This copies the impossibility of the second implementation in Haskell.)
Flow Witnesses
While in Haskell such a thing is never necessary, in Agda there are cases when it is useful for a branch to contain a “witness” (proof) of the condition on which it split (i.e. the true branch of if x < 2 then ... else ...
knows that x < 2 = True
).
The type signatures of both if_then_else_
and case_of_
on the Agda side contain instances of these proofs which can be used to work with e.g. intrinsic verification.
This allows for the following Agda code to type check:
data Range : Set where
MkRange : (low high : Int)
→ {{ @0 h : ((low <= high) ≡ True) }}
→ Range
{-# COMPILE AGDA2HS Range #-}
createRange : Int → Int → Maybe Range
createRange low high = if low <= high then Just (MkRange low high) else Nothing
{-# COMPILE AGDA2HS createRange #-}
createRangeCase : Int → Int → Maybe Range
createRangeCase low high =
case low <= high of λ where
True → Just (MkRange low high)
False → Nothing
{-# COMPILE AGDA2HS createRangeCase #-}
and compile to this simplified Haskell code:
data Range = MkRange Int Int
createRange :: Int -> Int -> Maybe Range
createRange low high
= if low <= high then Just (MkRange low high) else Nothing
createRangeCase :: Int -> Int -> Maybe Range
createRangeCase low high
= case low <= high of
True -> Just (MkRange low high)
False -> Nothing
Explicit type singatures
Haskell’s ::
syntax for explicit type signatures can be achieved using the the
function in Haskell.Prim.
Agda:
five : Nat
five = the (Nat -> Nat) id 5
{-# COMPILE AGDA2HS five #-}
Haskell:
five :: Natural
five = (id :: Natural -> Natural) 5
0-Quantity Parameters
Parameters can be annotated with a quantity of either 0
or ω
(the default quantity is ω
if no quantity is explicitly annotated). Such parameters are irrelevant to evaluation, so they are irrelevant to the compiled Haskell program, and so agda2hs erases them.
Agda:
data GhostInt : Set where
MakeGhostInt : @0 Int → GhostInt
-- fails
fromGhostInt : GhostInt -> Int
fromGhostInt (MakeGhostInt i) = i
-- passes
addGhostInts : GhostInt -> GhostInt -> GhostInt
addGhostInts (MakeGhostInt i) (MakeGhostInt j) = MakeGhostInt (i + j)
Haskell:
data GhostInt = MakeGhostInt
addGhostInts :: GhostInt -> GhostInt -> GhostInt
addGhostInts MakeGhostInt MakeGhostInt = MakeGhostInt
Coinduction
Agda:
data Stream (a : Set) (@0 i : Size) : Set where
Nil : Stream a i
Cons : a → Thunk (Stream a) i → Stream a i
{-# COMPILE AGDA2HS Stream #-}
repeat {a} {i} : a → Stream a i
repeat x = Cons x λ where .force → repeat x
{-# COMPILE AGDA2HS repeat #-}
Haskell:
data Stream a = Nil | Cons a (Stream a)
repeat :: a -> Stream a
repeat x = Cons x (repeat x)
Type Classes
To construct an instance of a type class, you can simply do the following:
Agda:
record Circle : Set where
constructor MkCircle
field
radius : Int
open Circle public
{-# COMPILE AGDA2HS Circle newtype #-}
instance
iCircleEq : Eq Circle
iCircleEq ._==_ (MkCircle r1) (MkCircle r2) = r1 == r2
{-# COMPILE AGDA2HS iCircleEq #-}
Haskell:
newtype Circle = MkCircle{radius :: Int}
instance Eq Circle where
MkCircle r1 == MkCircle r2 = r1 == r2
In some cases (especially when writing proofs), it might be necessary to use the properties (laws) that a type class instance should uphold.
In this case, you can also implement the IsLawful
instance for the data type and use it’s (erased) properties.
Agda:
record Equal (a : Set) : Set where
constructor MkEqual
field
pair : a × a
@0 proof : fst pair ≡ snd pair
open Equal public
{-# COMPILE AGDA2HS Equal newtype #-}
constructEqual : ⦃ iEqA : Eq a ⦄ → @0 ⦃ IsLawfulEq a ⦄ → (c : a) → (d : a) → Maybe (Equal a)
constructEqual a b =
if a == b then
(λ ⦃ h ⦄ → Just (MkEqual (a , b) (equality a b h)))
else Nothing
{-# COMPILE AGDA2HS constructEqual #-}
instance
iLawfulCircleEq : IsLawfulEq Circle
iLawfulCircleEq .isEquality (MkCircle r1) (MkCircle r2)
with r1 == r2 in eq
... | True = ofY (cong MkCircle (equality r1 r2 eq))
... | False = ofN λ ceq → (nequality r1 r2 eq) (cong radius ceq)
constructEqualCircle : (c : Circle) → (d : Circle) → Maybe (Equal Circle)
constructEqualCircle c d = constructEqual c d
{-# COMPILE AGDA2HS constructEqualCircle #-}
Haskell:
newtype Equal a = MkEqual{pair :: (a, a)}
constructEqual :: Eq a => a -> a -> Maybe (Equal a)
constructEqual a b
= if a == b then Just (MkEqual (a, b)) else Nothing
constructEqualCircle :: Circle -> Circle -> Maybe (Equal Circle)
constructEqualCircle c d = constructEqual c d
Constrained Typeclass Instance
Agda:
record Class1 (a : Set) : Set where
field
field1 : a
{-# COMPILE AGDA2HS Class1 class #-}
record Class2 (a : Set) : Set where
field
field2 : a
{-# COMPILE AGDA2HS Class2 class #-}
class1-implies-class2 (a : Set) : Class1 a → Class2 a
class1-implies-class2 _ class1 = record { field2 = class1.field1 }
{-# COMPILE AGDA2HS class1-implies-class2 #-}
Haskell:
class Class1 a where
field1 :: a
class Class2 where
field2 :: a
instance Class1 a => Class2 a where
field2 = field1
Constrained Typeclass
Agda:
record Class1 (a : Set) : Set where
field
field1 : a
{-# COMPILE AGDA2HS Class1 class #-}
record Class2 (a : Set) : Set where
field
overlap ⦃ super ⦄ : ClassA b
field2 : a
{-# COMPILE AGDA2HS Class2 class #-}
Haskell:
class Class1 a where
field1 :: a
class Class1 a => Class2 a where
field2 :: a
Default Typeclass Field Implementations
Agda:
record Ord (a : Set) : Set where
field
_<_ _>_ : a → a → Bool
record Ord₁ (a : Set) : Set where
field
_<_ : a → a → Bool
_>_ : a → a → Bool
x > y = y < x
record Ord₂ (a : Set) : Set where
field
_>_ : a → a → Bool
_<_ : a → a → Bool
_<_ = flip _>_
open Ord ⦃ ... ⦄
{-# COMPILE AGDA2HS Ord class Ord₁ Ord₂ #-}
instance
Ord₁-Bool : Ord₁ Bool
Ord₁-Bool .Ord₁._<_ False b = b
Ord₁-Bool .Ord₁._<_ True _ = False
instance
Ord₂-Bool : Ord₂ Bool
Ord₂-Bool .Ord₂.
Haskell:
class Ord a where
(<) :: a -> a -> Bool
(>) :: a -> a -> Bool
{-# MINIMAL (<) | (>) #-}
(<) = flip (>)
x > y = y < x
Copatterns in Type Class Instances
Agda copatterns are not supported by agda2hs in full generality. They can be used to define fields of typeclass instances, for example:
Agda:
record HasId (a : Set) : Set where
field id : a → a
{-# COMPILE AGDA2HS HasId class #-}
instance
UnitHasId : HasId
UnitHasId .id x = x
{-# COMPILE AGDA2HS UnitHasId #-}
class HasId a where
id :: a -> a
instance HasId () where
id x = x
Deriving Type Class Instances
If the derived instance is not needed on the Agda side and needs to only be generated in Haskell, the deriving clause can simply be added to the compilation pragma (this also works with the newtype
pragma):
data Planet : Set where
Mercury : Planet
Venus : Planet
Earth : Planet
Mars : Planet
Jupiter : Planet
Saturn : Planet
Uranus : Planet
Neptune : Planet
Pluto : Planet
{-# COMPILE AGDA2HS Planet deriving ( Read ) #-}
Haskell:
data Planet = Mercury
| Venus
| Earth
| Mars
| Jupiter
| Saturn
| Uranus
| Neptune
| Pluto
deriving (Read)
It is also possible to include a standalone deriving
clause which makes the instance available on the Agda side by
adding the
derive
pragma to an implemented instance,or postulating the instance.
Agda:
instance
iPlanetEq : Eq Planet
iPlanetEq ._==_ Mercury Mercury = True
iPlanetEq ._==_ Venus Venus = True
iPlanetEq ._==_ Earth Earth = True
iPlanetEq ._==_ Mars Mars = True
iPlanetEq ._==_ Jupiter Jupiter = True
iPlanetEq ._==_ Saturn Saturn = True
iPlanetEq ._==_ Uranus Uranus = True
iPlanetEq ._==_ Neptune Neptune = True
iPlanetEq ._==_ Pluto Pluto = True
iPlanetEq ._==_ _ _ = False
{-# COMPILE AGDA2HS iPlanetEq derive #-}
postulate instance iPlanetOrd : Ord Planet
{-# COMPILE AGDA2HS iPlanetOrd #-}
Haskell:
deriving instance Eq Planet
deriving instance Ord Planet
This is also possible with more complicated instance definitions, such as in the example below.
Agda:
data Optional (a : Set) : Set where
Of : a → Optional a
Empty : Optional a
{-# COMPILE AGDA2HS Optional #-}
postulate instance iOptionalEq : ⦃ Eq a ⦄ → Eq (Optional a)
{-# COMPILE AGDA2HS iOptionalEq #-}
Haskell:
data Optional a = Of a
| Empty
deriving instance (Eq a) => Eq (Optional a)
Or even with deriving strategies, by specifying them within the derive pragma (Agda2HS will also automatically set the language flags):
Agda:
postulate instance iPlanetShow : Show Planet
{-# COMPILE AGDA2HS iPlanetShow derive stock #-}
record Clazz (a : Set) : Set where
field
foo : a → Int
bar : a → Bool
open Clazz ⦃...⦄ public
{-# COMPILE AGDA2HS Clazz class #-}
postulate instance iPlanetClazz : Clazz Planet
{-# COMPILE AGDA2HS iPlanetClazz derive anyclass #-}
data Duo (a b : Set) : Set where
MkDuo : (a × b) → Duo a b
{-# COMPILE AGDA2HS Duo newtype #-}
postulate instance iDuoEq : ⦃ Eq a ⦄ → ⦃ Eq b ⦄ → Eq (Duo a b)
{-# COMPILE AGDA2HS iDuoEq derive newtype #-}
Haskell:
{-# LANGUAGE StandaloneDeriving, DerivingStrategies,
DeriveAnyClass, GeneralizedNewtypeDeriving #-}
deriving stock instance Show Planet
class Clazz a where
foo :: a -> Int
bar :: a -> Bool
deriving anyclass instance Clazz Planet
newtype Duo a b = MkDuo (a, b)
deriving newtype instance (Eq a, Eq b) => Eq (Duo a b)
Partial Application
Agda:
add1 : Nat → Nat
add1 = 1 +_
{-# COMPILE AGDA2HS add1 #-}
Haskell:
add1 :: Nat -> Nat
add1 = (1 +)
Mutual Recursion
Mutually Recursive Functions
Agda
mutual
even : Nat → Bool
even Zero = True
even (Suc n) = odd n
odd : Nat → Bool
odd Zero = False
odd (Suc n) = even n
Haskell
even :: Nat -> Bool
even Zero = True
even (Suc n) = odd n
odd :: Nat -> Bool
odd Zero = False
odd (Suc n) = even n
Mutually Recursive Datatype and Function
Agda
mutual
data Map (k : Set) (a : Set) : Set where
Bin : (sz : Nat) → (kx : k) → (x : a)
→ (l : Map k a) → (r : Map k a)
→ {{@0 szVal : sz ≡ (size l) + (size r) + 1}}
→ Map k a
Tip : Map k a
{-# COMPILE AGDA2HS Map #-}
size : {k a : Set} → Map k a → Nat
size Tip = 0
size (Bin sz _ _ _ _) = sz
{-# COMPILE AGDA2HS size #-}
Haskell
data Map k a = Bin Natural k a (Map k a) (Map k a)
| Tip
size :: Map k a -> Natural
size Tip = 0
size (Bin sz _ _ _ _) = sz
Implicit Record Field
Agda
record ImplicitField (a : Set) : Set where
field
aField : a
@0 {anImplicitField} : a
open ImplicitField public
{-# COMPILE AGDA2HS ImplicitField class #-}
Haskell
class ImplicitField a where
aField :: a
Haskell Language Extensions
Required haskell language extensions will be automatically inferred and enabled.
A Haskell language extension can also be enabled manually as follows:
Agda
{-# FOREIGN AGDA2HS {-# LANGUAGE LambdaCase #-} #-}
Haskell
{-# LANGUAGE LambdaCase #-}
Imports
Agda supports import statements anywhere in a file, but all generated Haskell imports will be placed at the top of the file.
Agda
open import M1 -- imports datatype `A` with constructor `mkA`
a : A
a = mkA
{-# COMPILE AGDA2HS a #-}
open import M2 -- imports datatype `B` with constructor `mkB`
b : B
b = mkB
{-# COMPILE AGDA2HS b #-}
Haskell
import M1 (A(mkA))
import M2 (B(mkB))
a :: A
a = mkA
b :: B
b = bar
Note that on the Haskell side all imports are explicit, i.e. indicate the imported identifiers.
Imports can be qualified, but not hidden (although one can still do this manually using FOREIGN).
Agda
import MyModule as M -- imports type X and function foo
test : M.X -> M.X
test = M.foo
{-# COMPILE AGDA2HS test #-}
Haskell
import qualified MyModule as M (X, foo)
test :: M.X -> M.X
test = M.foo
Other supported features include
qualifying the Haskell prelude,
automatically inserting necessary packages for built-in types
sharing a qualifier across different modules to make a common namespace
Agda
import Haskell.Prelude as Pre
_+_ : Pre.Nat → Pre.Nat → Pre.Nat
x + y = x
{-# COMPILE AGDA2HS _+_ #-}
test : Pre.Nat
test = 0 Pre.+ 1 + 0
{-# COMPILE AGDA2HS test #-}
Haskell
import Numeric.Natural (Natural)
import qualified Prelude as Pre ((+))
(+) :: Natural -> Natural -> Natural
x + y = x
test :: Natural
test = (Pre.+) 0 (1 + 0)
An important difference is that multiple qualifications of the same module will be absorbed in a single qualifier, specifically the lexicographically smallest one based on each character’s ASCII value, independent of the order the imports appear in the source file:
Agda
import MyModule as C
testC = C.foo
{-# COMPILE AGDA2HS testC #-}
import MyModule as A
testA = A.foo
{-# COMPILE AGDA2HS testA #-}
testB = B.foo
import MyModule as B
{-# COMPILE AGDA2HS testB #-}
Haskell
import qualified MyModule as A (foo)
testC = A.foo
testA = A.foo
testB = A.foo
Rewrite rules and Prelude imports
Rewrite rules
User-defined rewrite rules can be defined through a YAML configuration
file. It is enabled with the --config
option.
This feature is particularly useful if you have a project depending on a large library which is not agda2hs-compatible (e.g the standard library). In this case, you might not want to rewrite the entire library, but may still rely on it for proofs.
User-defined rewrite rules can help translating the library functions to ones available
in the Haskell Prelude, or even to those written by yourself. In the latter
case, place a Haskell file (e.g. Base.hs
) next to your .agda
files that
contains your custom definitions and provide this custom module in the
importing
clauses of the config file.
To an extent, this compromises the mathematically proven correctness of your project. But if you trust that your (or Prelude’s) functions are equivalent to the original ones, this might not be a problem. You can also prove the equivalence of the two definitions to be safe.
For example, let’s suppose we want to compile the following file:
open import Data.Nat as ℕ
open import Data.Integer as ℤ
open import Data.Rational.Unnormalised as ℚ
double : ℚᵘ → ℚᵘ
double p = (+ 2 / 1) ℚ.* p
{-# COMPILE AGDA2HS double #-}
-- this will use denominator-1 and suc from BaseExample.hs
twoDenoms : ℚᵘ → ℕ
twoDenoms p = 2 ℕ.* (ℕ.suc (ℚᵘ.denominator-1 p))
{-# COMPILE AGDA2HS twoDenoms #-}
By default, the output would be this:
module Example where
import Data.Rational.Unnormalised.Base (ℚᵘ(denominator-1), (/))
import qualified Data.Rational.Unnormalised.Base as ℚ ((*))
import Numeric.Natural (Natural)
import qualified Prelude as ℕ ((*))
double :: ℚᵘ -> ℚᵘ
double p = (ℚ.*) (pos 2 / 1) p
twoDenoms :: ℚᵘ -> Natural
twoDenoms p = (ℕ.*) 2 (suc (denominator-1 p))
Here, agda2hs doesn’t know where to find these definitions; so it simply leaves them as they are.
Run this again with the following config file:
rewrites:
- from: "Agda.Builtin.Nat.Nat.suc"
to: "suc"
importing: "BaseExample"
- from: "Agda.Builtin.Nat._*_"
to: "_*_"
importing: "Prelude"
- from: "Agda.Builtin.Int.Int.pos"
to: "toInteger"
importing: "Prelude"
- from: "Data.Rational.Unnormalised.Base.ℚᵘ"
to: "Rational"
importing: "Data.Ratio"
- from: "Data.Rational.Unnormalised.Base._*_"
to: "_*_"
importing: "Prelude"
- from: "Data.Rational.Unnormalised.Base._/_"
to: "_%_"
importing: "Data.Ratio"
- from: "Data.Rational.Unnormalised.Base.ℚᵘ.denominator-1"
to: "denominatorMinus1"
importing: "BaseExample"
The names are a bit difficult to find. It helps if you run agda2hs with a verbosity level of 26 and check the logs (specifically the parts beginning with compiling name
).
The output is now this:
module Example where
import BaseExample (denominatorMinus1, suc)
import Data.Ratio (Rational, (%))
import Numeric.Natural (Natural)
import Prelude (toInteger, (*))
double :: Rational -> Rational
double p = toInteger 2 % 1 * p
twoDenoms :: Rational -> Natural
twoDenoms p = 2 * suc (denominatorMinus1 p)
With a manually written BaseExample.hs
file like this, GHCi accepts it:
module BaseExample where
import Numeric.Natural
import Data.Ratio
suc :: Natural -> Natural
suc = (1 +)
denominatorMinus1 :: Rational -> Natural
denominatorMinus1 = fromIntegral . denominator
See also rewrite-rules-example.yaml
in the root of the repository.
Handling of Prelude
By default, agda2hs handles Prelude like other modules: it collects all the identifiers it finds we use from Prelude, and adds them to Prelude’s import list.
A different behaviour can be specified in a YAML configuration file. The format is the following:
# First, we specify how to handle Prelude.
prelude:
implicit: true
hiding: # if implicit is true
- seq
#using: # if implicit is false
# - +
# - Num
# Then the rules themselves.
rewrites:
# The rational type.
- from: "Data.Rational.Unnormalised.Base.ℚᵘ"
to: "Rational"
importing: "Data.Ratio"
# ...
If implicit
is true
, then everything gets imported from Prelude, except for those that are specified in the hiding
list. This can cause clashes if you reuse names from Prelude, hence the opportunity for a hiding
list. If there is no such list, then everything gets imported.
If implicit
is false
, Prelude gets imported explicitly, and only those identifiers that are specified in the using
list. If there is no such list, agda2hs reverts to the default behaviour (it tries to collect imports by itself).
Known issues
Rewrite rules only work for things you do use, not for those that you only define. This causes a problem with class instances: if you choose the default behaviour, then write an instance of the Num class and define signum but do not use it, it will not get into Prelude’s import list, and so GHC will complain.
You cannot change to a version with arguments of different modality without getting useless code. So if you rewrite a function to a version which has some of its parameters erased, the parameters remain there; probably because rewriting happens only after compiling the type signature.
Emacs mode
Since there is a full Agda typechecker in the agda2hs
binary,
you can readily use the Emacs mode of a pre-existing Agda installation by changing the binary that agda-mode
uses to the path to agda2hs
binary.
First, check the version of the Agda typechecker in the
agda2hs
binary by callingagda2hs --version
.Install this version of Agda.
Run
agda-mode setup
.In Emacs, set the
agda2-program-name
variable toagda2hs
(useM-x customize-variable
). Alternatively, you can also set it in your~/.emacs
file by hand.With
C-c C-x C-c
, you will now be able call theagda2hs
backend from inside Emacs; all the other built-in backends still remain available.
Known issues
Now, the output can only be written next to the
.agda
files; there is no option to collect these under a separate directory.The
--config
option is not yet supported in Emacs mode.