```------------------------------------------------------------------------
-- The Agda standard library
--
-- AVL trees where the stored values may depend on their key
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Bundles using (StrictTotalOrder)

module Data.Tree.AVL.Indexed
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where

open import Level using (Level; _⊔_)
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Product.Base using (Σ; ∃; _×_; _,_; proj₁)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.List.Base as List using (List)
open import Data.DifferenceList using (DiffList; []; _∷_; _++_)
open import Function.Base as F hiding (const)
open import Relation.Unary
open import Relation.Binary.Definitions using (_Respects_; Tri; tri<; tri≈; tri>)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)

private
variable
l v : Level
A : Set l

open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)

------------------------------------------------------------------------
-- Re-export core definitions publicly

open import Data.Tree.AVL.Key strictTotalOrder public
open import Data.Tree.AVL.Value Eq.setoid public
open import Data.Tree.AVL.Height public

------------------------------------------------------------------------
-- Definitions of the tree

-- The trees have three parameters/indices: a lower bound on the
-- keys, an upper bound, and a height.
--
-- (The bal argument is the balance factor.)

data Tree {v} (V : Value v) (l u : Key⁺) : ℕ → Set (a ⊔ v ⊔ ℓ₂) where
leaf : (l<u : l <⁺ u) → Tree V l u 0
node : ∀ {hˡ hʳ h}
(kv : K& V)
(lk : Tree V l [ kv .key ] hˡ)
(ku : Tree V [ kv .key ] u hʳ)
(bal : hˡ ∼ hʳ ⊔ h) →
Tree V l u (suc h)

module _ {v} {V : Value v} where

ordered : ∀ {l u n} → Tree V l u n → l <⁺ u
ordered (leaf l<u)          = l<u
ordered (node kv lk ku bal) = trans⁺ _ (ordered lk) (ordered ku)

private
Val = Value.family V
V≈  = Value.respects V

leaf-injective : ∀ {l u} {p q : l <⁺ u} → (Tree V l u 0 ∋ leaf p) ≡ leaf q → p ≡ q
leaf-injective refl = refl

node-injective-key :
∀ {hˡ₁ hˡ₂ hʳ₁ hʳ₂ h l u k₁ k₂}
{lk₁ : Tree V l [ k₁ .key ] hˡ₁} {lk₂ : Tree V l [ k₂ .key ] hˡ₂}
{ku₁ : Tree V [ k₁ .key ] u hʳ₁} {ku₂ : Tree V [ k₂ .key ] u hʳ₂}
{bal₁ : hˡ₁ ∼ hʳ₁ ⊔ h} {bal₂ : hˡ₂ ∼ hʳ₂ ⊔ h} →
node k₁ lk₁ ku₁ bal₁ ≡ node k₂ lk₂ ku₂ bal₂ → k₁ ≡ k₂
node-injective-key refl = refl

-- in Data.Tree.AVL.Indexed.WithK.

-- Cast operations. Logarithmic in the size of the tree, if we don't
-- count the time needed to construct the new proofs in the leaf
-- cases. (The same kind of caveat applies to other operations
-- below.)
--
-- Perhaps it would be worthwhile changing the data structure so
-- that the casts could be implemented in constant time (excluding
-- proof manipulation). However, note that this would not change the
-- worst-case time complexity of the operations below (up to Θ).

castˡ : ∀ {l m u h} → l <⁺ m → Tree V m u h → Tree V l u h
castˡ {l} l<m (leaf m<u)         = leaf (trans⁺ l l<m m<u)
castˡ     l<m (node k mk ku bal) = node k (castˡ l<m mk) ku bal

castʳ : ∀ {l m u h} → Tree V l m h → m <⁺ u → Tree V l u h
castʳ {l} (leaf l<m)         m<u = leaf (trans⁺ l l<m m<u)
castʳ     (node k lk km bal) m<u = node k lk (castʳ km m<u) bal

-- Various constant-time functions which construct trees out of
-- smaller pieces, sometimes using rotation.

pattern node⁺ k₁ t₁ k₂ t₂ t₃ bal = node k₁ t₁ (node k₂ t₂ t₃ bal) ∼+

joinˡ⁺ : ∀ {l u hˡ hʳ h} →
(k : K& V) →
(∃ λ i → Tree V l [ k .key ] (i ⊕ hˡ)) →
Tree V [ k .key ] u hʳ →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ (1 + h))
joinˡ⁺ k₂ (0# , t₁)                t₃ bal = (0# , node k₂ t₁ t₃ bal)
joinˡ⁺ k₂ (1# , t₁)                t₃ ∼0  = (1# , node k₂ t₁ t₃ ∼-)
joinˡ⁺ k₂ (1# , t₁)                t₃ ∼+  = (0# , node k₂ t₁ t₃ ∼0)
joinˡ⁺ k₄ (1# , node  k₂ t₁ t₃ ∼-) t₅ ∼-  = (0# , node k₂ t₁ (node k₄ t₃ t₅ ∼0) ∼0)
joinˡ⁺ k₄ (1# , node  k₂ t₁ t₃ ∼0) t₅ ∼-  = (1# , node k₂ t₁ (node k₄ t₃ t₅ ∼-) ∼+)
joinˡ⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼-
= (0# , node k₄ (node k₂ t₁ t₃ (max∼ bal))
(node k₆ t₅ t₇ (∼max bal))
∼0)

pattern node⁻ k₁ k₂ t₁ t₂ bal t₃ = node k₁ (node k₂ t₁ t₂ bal) t₃ ∼-

joinʳ⁺ : ∀ {l u hˡ hʳ h} →
(k : K& V) →
Tree V l [ k .key ] hˡ →
(∃ λ i → Tree V [ k .key ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ (1 + h))
joinʳ⁺ k₂ t₁ (0# , t₃)               bal = (0# , node k₂ t₁ t₃ bal)
joinʳ⁺ k₂ t₁ (1# , t₃)               ∼0  = (1# , node k₂ t₁ t₃ ∼+)
joinʳ⁺ k₂ t₁ (1# , t₃)               ∼-  = (0# , node k₂ t₁ t₃ ∼0)
joinʳ⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+  = (0# , node k₄ (node k₂ t₁ t₃ ∼0) t₅ ∼0)
joinʳ⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+  = (1# , node k₄ (node k₂ t₁ t₃ ∼+) t₅ ∼-)
joinʳ⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+
= (0# , node k₄ (node k₂ t₁ t₃ (max∼ bal))
(node k₆ t₅ t₇ (∼max bal))
∼0)

joinˡ⁻ : ∀ {l u} hˡ {hʳ h} →
(k : K& V) →
(∃ λ i → Tree V l [ k .key ] pred[ i ⊕ hˡ ]) →
Tree V [ k .key ] u hʳ →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ h)
joinˡ⁻ zero    k₂ (0# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ zero    k₂ (1# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼+  = joinʳ⁺ k₂ t₁ (1# , t₃) ∼+
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼0  = (1# , node k₂ t₁ t₃ ∼+)
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼-  = (0# , node k₂ t₁ t₃ ∼0)
joinˡ⁻ (suc _) k₂ (1# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)

joinʳ⁻ : ∀ {l u hˡ} hʳ {h} →
(k : K& V) →
Tree V l [ k .key ] hˡ →
(∃ λ i → Tree V [ k .key ] u pred[ i ⊕ hʳ ]) →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ h)
joinʳ⁻ zero    k₂ t₁ (0# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ zero    k₂ t₁ (1# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼-  = joinˡ⁺ k₂ (1# , t₁) t₃ ∼-
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼0  = (1# , node k₂ t₁ t₃ ∼-)
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼+  = (0# , node k₂ t₁ t₃ ∼0)
joinʳ⁻ (suc _) k₂ t₁ (1# , t₃) bal = (1# , node k₂ t₁ t₃ bal)

-- Extracts the smallest element from the tree, plus the rest.
-- Logarithmic in the size of the tree.

headTail : ∀ {l u h} → Tree V l u (1 + h) →
∃ λ (k : K& V) → l <⁺ [ k .key ] ×
∃ λ i → Tree V [ k .key ] u (i ⊕ h)
headTail (node k₁ (leaf l<k₁) t₂ ∼+) = (k₁ , l<k₁ , 0# , t₂)
headTail (node k₁ (leaf l<k₁) t₂ ∼0) = (k₁ , l<k₁ , 0# , t₂)
headTail (node {hˡ = suc _} k₃ t₁₂ t₄ bal) with headTail t₁₂
... | (k₁ , l<k₁ , t₂) = (k₁ , l<k₁ , joinˡ⁻ _ k₃ t₂ t₄ bal)

-- Extracts the largest element from the tree, plus the rest.
-- Logarithmic in the size of the tree.

initLast : ∀ {l u h} → Tree V l u (1 + h) →
∃ λ (k : K& V) → [ k .key ] <⁺ u ×
∃ λ i → Tree V l [ k .key ] (i ⊕ h)
initLast (node k₂ t₁ (leaf k₂<u) ∼-) = (k₂ , k₂<u , (0# , t₁))
initLast (node k₂ t₁ (leaf k₂<u) ∼0) = (k₂ , k₂<u , (0# , t₁))
initLast (node {hʳ = suc _} k₂ t₁ t₃₄ bal) with initLast t₃₄
... | (k₄ , k₄<u , t₃) = (k₄ , k₄<u , joinʳ⁻ _ k₂ t₁ t₃ bal)

-- Another joining function. Logarithmic in the size of either of
-- the input trees (which need to have almost equal heights).

join : ∀ {l m u hˡ hʳ h} →
Tree V l m hˡ → Tree V m u hʳ → (bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ h)
join t₁ (leaf m<u) ∼0 = (0# , castʳ t₁ m<u)
join t₁ (leaf m<u) ∼- = (0# , castʳ t₁ m<u)
join {hʳ = suc _} t₁ t₂₃ bal with headTail t₂₃
... | (k₂ , m<k₂ , t₃) = joinʳ⁻ _ k₂ (castʳ t₁ m<k₂) t₃ bal

-- An empty tree.

empty : ∀ {l u} → l <⁺ u → Tree V l u 0
empty = leaf

-- A singleton tree.

singleton : ∀ {l u} (k : Key) → Val k → l < k < u → Tree V l u 1
singleton k v (l<k , k<u) = node (k , v) (leaf l<k) (leaf k<u) ∼0

-- Inserts a key into the tree, using a function to combine any
-- existing value with the new value. Logarithmic in the size of the
-- tree (assuming constant-time comparisons and a constant-time
-- combining function).

insertWith : ∀ {l u h} (k : Key) → (Maybe (Val k) → Val k) →  -- Maybe old → result.
Tree V l u h → l < k < u →
∃ λ i → Tree V l u (i ⊕ h)
insertWith k f (leaf l<u) l<k<u = (1# , singleton k (f nothing) l<k<u)
insertWith k f (node (k′ , v′) lp pu bal) (l<k , k<u) with compare k k′
... | tri< k<k′ _ _ = joinˡ⁺ (k′ , v′) (insertWith k f lp (l<k , [ k<k′ ]ᴿ)) pu bal
... | tri> _ _ k′<k = joinʳ⁺ (k′ , v′) lp (insertWith k f pu ([ k′<k ]ᴿ , k<u)) bal
... | tri≈ _ k≈k′ _ = (0# , node (k′ , V≈ k≈k′ (f (just (V≈ (Eq.sym k≈k′) v′)))) lp pu bal)

-- Inserts a key into the tree. If the key already exists, then it
-- is replaced. Logarithmic in the size of the tree (assuming
-- constant-time comparisons).

insert : ∀ {l u h} → (k : Key) → Val k → Tree V l u h → l < k < u →
∃ λ i → Tree V l u (i ⊕ h)
insert k v = insertWith k (F.const v)

-- Deletes the key/value pair containing the given key, if any.
-- Logarithmic in the size of the tree (assuming constant-time
-- comparisons).

delete : ∀ {l u h} (k : Key) → Tree V l u h → l < k < u →
∃ λ i → Tree V l u pred[ i ⊕ h ]
delete k (leaf l<u) l<k<u = (0# , leaf l<u)
delete k (node p@(k′ , v) lp pu bal) (l<k , k<u) with compare k′ k
... | tri< k′<k _ _ = joinʳ⁻ _ p lp (delete k pu ([ k′<k ]ᴿ , k<u)) bal
... | tri> _ _ k′>k = joinˡ⁻ _ p (delete k lp (l<k , [ k′>k ]ᴿ)) pu bal
... | tri≈ _ k′≡k _ = join lp pu bal

-- Looks up a key. Logarithmic in the size of the tree (assuming
-- constant-time comparisons).

lookup : ∀ {l u h} → Tree V l u h → (k : Key) → l < k < u → Maybe (Val k)
lookup (leaf _) k l<k<u = nothing
lookup (node (k′ , v) lk′ k′u _) k (l<k , k<u) with compare k′ k
... | tri< k′<k _ _ = lookup k′u k ([ k′<k ]ᴿ , k<u)
... | tri> _ _ k′>k = lookup lk′ k (l<k , [ k′>k ]ᴿ)
... | tri≈ _ k′≡k _ = just (V≈ k′≡k v)

-- Converts the tree to an ordered list. Linear in the size of the
-- tree.

foldr : ∀ {l u h} → (∀ {k} → Val k → A → A) → A → Tree V l u h → A
foldr cons nil (leaf l<u)             = nil
foldr cons nil (node (_ , v) l r bal) = foldr cons (cons v (foldr cons nil r)) l

toDiffList : ∀ {l u h} → Tree V l u h → DiffList (K& V)
toDiffList (leaf _)       = []
toDiffList (node k l r _) = toDiffList l ++ k ∷ toDiffList r

toList : ∀ {l u h} → Tree V l u h → List (K& V)
toList t = toDiffList t List.[]

size : ∀ {l u h} → Tree V l u h → ℕ
size = List.length ∘′ toList

module _ {v w} {V : Value v} {W : Value w} where

private
Val = Value.family V
Wal = Value.family W

-- Maps a function over all values in the tree.

map : ∀[ Val ⇒ Wal ] → ∀ {l u h} → Tree V l u h → Tree W l u h
map f (leaf l<u)             = leaf l<u
map f (node (k , v) l r bal) = node (k , f v) (map f l) (map f r) bal
```