```------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointers into star-lists
------------------------------------------------------------------------

{-# OPTIONS --with-K --safe #-}

module Data.Star.Pointer {ℓ} {I : Set ℓ} where

open import Data.Maybe.Base using (Maybe; nothing; just)
open import Data.Star.Decoration
open import Data.Unit.Base
open import Function.Base using (const)
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Definitions using (NonEmpty; nonEmpty)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive

private
variable
r p q : Level

-- Pointers into star-lists. The edge pointed to is decorated with Q,
-- while other edges are decorated with P.

data Pointer {T : Rel I r}
(P : EdgePred p T) (Q : EdgePred q T)
: Rel (Maybe (NonEmpty (Star T))) (ℓ ⊔ r ⊔ p ⊔ q) where
step : ∀ {i j k} {x : T i j} {xs : Star T j k}
(p : P x) → Pointer P Q (just (nonEmpty (x ◅ xs)))
(just (nonEmpty xs))
done : ∀ {i j k} {x : T i j} {xs : Star T j k}
(q : Q x) → Pointer P Q (just (nonEmpty (x ◅ xs))) nothing

-- Any P Q xs means that some edge in xs satisfies Q, while all
-- preceding edges satisfy P. A star-list of type Any Always Always xs
-- is basically a prefix of xs; the existence of such a prefix
-- guarantees that xs is non-empty.

Any : {T : Rel I r} (P : EdgePred p T) (Q : EdgePred q T) →
EdgePred (ℓ ⊔ (r ⊔ (p ⊔ q))) (Star T)
Any P Q xs = Star (Pointer P Q) (just (nonEmpty xs)) nothing

module _ {T : Rel I r} {P : EdgePred p T} {Q : EdgePred q T} where

this : ∀ {i j k} {x : T i j} {xs : Star T j k} →
Q x → Any P Q (x ◅ xs)
this q = done q ◅ ε

that : ∀ {i j k} {x : T i j} {xs : Star T j k} →
P x → Any P Q xs → Any P Q (x ◅ xs)
that p = _◅_ (step p)

-- Safe lookup.

data Result (T : Rel I r)
(P : EdgePred p T) (Q : EdgePred q T) : Set (ℓ ⊔ r ⊔ p ⊔ q) where
result : ∀ {i j} {x : T i j} (p : P x) (q : Q x) → Result T P Q

-- The first argument points out which edge to extract. The edge is
-- returned, together with proofs that it satisfies Q and R.

module _ {T : Rel I r} {P : EdgePred p T} {Q : EdgePred q T} where

lookup : ∀ {r} {R : EdgePred r T} {i j} {xs : Star T i j} →
All R xs → Any P Q xs → Result T Q R
lookup (↦ r ◅ _)  (done q ◅ ε)  = result q r
lookup (↦ _ ◅ rs) (step p ◅ ps) = lookup rs ps

-- We can define something resembling init.

prefixIndex : ∀ {i j} {xs : Star T i j} → Any P Q xs → I
prefixIndex (done {i = i} q ◅ _)  = i
prefixIndex (step p         ◅ ps) = prefixIndex ps

prefix : ∀ {i j} {xs : Star T i j} →
(ps : Any P Q xs) → Star T i (prefixIndex ps)
prefix (done q         ◅ _)  = ε
prefix (step {x = x} p ◅ ps) = x ◅ prefix ps

-- Here we are taking the initial segment of ps (all elements but the
-- last, i.e. all edges satisfying P).

init : ∀ {i j} {xs : Star T i j} →
(ps : Any P Q xs) → All P (prefix ps)
init (done q ◅ _)  = ε
init (step p ◅ ps) = ↦ p ◅ init ps

-- One can simplify the implementation by not carrying around the
-- indices in the type:

last : ∀ {i j} {xs : Star T i j} →
Any P Q xs → NonEmptyEdgePred T Q
last ps with lookup {r = p} (decorate (const (lift tt)) _) ps
... | result q _ = nonEmptyEdgePred q
```