------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where all elements satisfy a given property ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.List.Relation.Unary.All where open import Effect.Applicative open import Effect.Monad open import Data.Empty using (⊥) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional renaming (_∈_ to _∈ₚ_) import Data.List.Membership.Setoid as SetoidMembership open import Data.Product as Prod using (∃; -,_; _×_; _,_; proj₁; proj₂; uncurry) open import Data.Sum.Base as Sum using (inj₁; inj₂) open import Function open import Level open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec open import Relation.Unary hiding (_∈_) open import Relation.Binary using (Setoid; _Respects_) open import Relation.Binary.PropositionalEquality as P private variable a b p q r ℓ : Level A : Set a B : Set b P Q R : Pred A p x : A xs : List A ------------------------------------------------------------------------ -- Definitions -- Given a predicate P, then All P xs means that every element in xs -- satisfies P. See `Relation.Unary` for an explanation of predicates. infixr 5 _∷_ data All {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs) -- All P xs is a finite map from indices x ∈ xs to content P x. -- Relation pxs [ i ]= px states that, in map pxs, key i : x ∈ xs points to value px. infix 4 _[_]=_ data _[_]=_ {A : Set a} {P : Pred A p} : ∀ {x xs} → All P xs → x ∈ₚ xs → P x → Set (a ⊔ p) where here : ∀ {x xs} {px : P x} {pxs : All P xs} → px ∷ pxs [ here refl ]= px there : ∀ {x xs y} {px : P x} {pxs : All P xs} {py : P y} {i : x ∈ₚ xs} → pxs [ i ]= px → py ∷ pxs [ there i ]= px -- A list is empty if having an element is impossible. Null : Pred (List A) _ Null = All (λ _ → ⊥) ------------------------------------------------------------------------ -- Operations on All uncons : All P (x ∷ xs) → P x × All P xs uncons (px ∷ pxs) = px , pxs head : All P (x ∷ xs) → P x head = proj₁ ∘ uncons tail : All P (x ∷ xs) → All P xs tail = proj₂ ∘ uncons reduce : (f : ∀ {x} → P x → B) → All P xs → List B reduce f [] = [] reduce f (px ∷ pxs) = f px ∷ reduce f pxs construct : (f : B → ∃ P) (xs : List B) → ∃ (All P) construct f [] = [] , [] construct f (x ∷ xs) = Prod.zip _∷_ _∷_ (f x) (construct f xs) fromList : (xs : List (∃ P)) → All P (List.map proj₁ xs) fromList [] = [] fromList ((x , p) ∷ xps) = p ∷ fromList xps toList : All P xs → List (∃ P) toList pxs = reduce (λ {x} px → x , px) pxs map : P ⊆ Q → All P ⊆ All Q map g [] = [] map g (px ∷ pxs) = g px ∷ map g pxs zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R zipWith f ([] , []) = [] zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : R ⊆ P ∩ Q → All R ⊆ All P ∩ All Q unzipWith f [] = [] , [] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs) zip : All P ∩ All Q ⊆ All (P ∩ Q) zip = zipWith id unzip : All (P ∩ Q) ⊆ All P ∩ All Q unzip = unzipWith id module _(S : Setoid a ℓ) {P : Pred (Setoid.Carrier S) p} where open Setoid S renaming (Carrier to C; refl to refl₁) open SetoidMembership S tabulateₛ : (∀ {x} → x ∈ xs → P x) → All P xs tabulateₛ {[]} hyp = [] tabulateₛ {x ∷ xs} hyp = hyp (here refl₁) ∷ tabulateₛ (hyp ∘ there) tabulate : (∀ {x} → x ∈ₚ xs → P x) → All P xs tabulate = tabulateₛ (P.setoid _) self : ∀ {xs : List A} → All (const A) xs self = tabulate (λ {x} _ → x) ------------------------------------------------------------------------ -- (weak) updateAt infixl 6 _[_]%=_ _[_]≔_ updateAt : x ∈ₚ xs → (P x → P x) → All P xs → All P xs updateAt () f [] updateAt (here refl) f (px ∷ pxs) = f px ∷ pxs updateAt (there i) f (px ∷ pxs) = px ∷ updateAt i f pxs _[_]%=_ : All P xs → x ∈ₚ xs → (P x → P x) → All P xs pxs [ i ]%= f = updateAt i f pxs _[_]≔_ : All P xs → x ∈ₚ xs → P x → All P xs pxs [ i ]≔ px = pxs [ i ]%= const px ------------------------------------------------------------------------ -- Traversable-like functions module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)} {F : Set (a ⊔ p) → Set (a ⊔ p)} (App : RawApplicative F) where open RawApplicative App sequenceA : All (F ∘′ P) ⊆ F ∘′ All P sequenceA [] = pure [] sequenceA (x ∷ xs) = _∷_ <$> x <*> sequenceA xs mapA : ∀ {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P) mapA f = sequenceA ∘′ map f forA : ∀ {Q : Pred A q} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs) forA qxs f = mapA f qxs module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)} {M : Set (a ⊔ p) → Set (a ⊔ p)} (Mon : RawMonad M) where private App = RawMonad.rawApplicative Mon sequenceM : All (M ∘′ P) ⊆ M ∘′ All P sequenceM = sequenceA p App mapM : ∀ {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P) mapM = mapA p App forM : ∀ {Q : Pred A q} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs) forM = forA p App ------------------------------------------------------------------------ -- Generalised lookup based on a proof of Any lookupAny : All P xs → (i : Any Q xs) → (P ∩ Q) (Any.lookup i) lookupAny (px ∷ pxs) (here qx) = px , qx lookupAny (px ∷ pxs) (there i) = lookupAny pxs i lookupWith : ∀[ P ⇒ Q ⇒ R ] → All P xs → (i : Any Q xs) → R (Any.lookup i) lookupWith f pxs i = Prod.uncurry f (lookupAny pxs i) lookup : All P xs → (∀ {x} → x ∈ₚ xs → P x) lookup pxs = lookupWith (λ { px refl → px }) pxs module _(S : Setoid a ℓ) {P : Pred (Setoid.Carrier S) p} where open Setoid S renaming (sym to sym₁) open SetoidMembership S lookupₛ : P Respects _≈_ → All P xs → (∀ {x} → x ∈ xs → P x) lookupₛ resp pxs = lookupWith (λ py x=y → resp (sym₁ x=y) py) pxs ------------------------------------------------------------------------ -- Properties of predicates preserved by All all? : Decidable P → Decidable (All P) all? p [] = yes [] all? p (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (p x ×-dec all? p xs) universal : Universal P → Universal (All P) universal u [] = [] universal u (x ∷ xs) = u x ∷ universal u xs irrelevant : Irrelevant P → Irrelevant (All P) irrelevant irr [] [] = P.refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : Satisfiable (All P) satisfiable = [] , [] ------------------------------------------------------------------------ -- Generalised decidability procedure decide : Π[ P ∪ Q ] → Π[ All P ∪ Any Q ] decide p∪q [] = inj₁ [] decide p∪q (x ∷ xs) with p∪q x ... | inj₂ qx = inj₂ (here qx) ... | inj₁ px = Sum.map (px ∷_) there (decide p∪q xs) ------------------------------------------------------------------------ -- DEPRECATED ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.4 all = all? {-# WARNING_ON_USAGE all "Warning: all was deprecated in v1.4. Please use all? instead." #-}