Specification of Core Agda*
Subtitle!

THE AGDA SPECIFICATION TEAM?, Institutionl
FIRST2 LAST28, Institution2a and Institution2b

This document specifies the abstract syntax, evaluation rules, and typing rules of Core Agda, the basic type
theory underlying Agda.

CCS Concepts: eSoftware and its engineering — General programming languages; eSocial and pro-
fessional topics — History of programming languages;

Additional Key Words and Phrases: Agda, dependent types, specification

ACM Reference format:

The Agda Specification Team and First2 Last2. 2017. Specification of Core Agda. PACM Progr. Lang. 1, 1,
Article 1 (January 2017), 77 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Agda 2 has been developed since 2005, and been released 2007. So far, no specification has been given.
This document attempts to specify the core components of Agda.

2 SYNTAX
2.1 Terms

We distinguish global names f, F, D, ¢, R, ® bound in the signature 3 from local variables z, y, z bound in
typing contexts I'. Local variables are represented by de Bruijn indices in the implementation, but for
the sake of readability we stick to a named presentation here. We silently rename bound variables to
avoid clashes with free variables (Barendregt convention). We write z#E (“x fresh for E”) to express
that x is a fresh variable with regard to syntactic entity FE.

For orientation of the reader, we use different letters to represent different purposes of global names.
However, they share the same name space and are not distinguished syntactically.

data type name

record type name

data type or record type name

function name

projection name (overloaded)

data/record constructor name (overloaded)

SERLE IS

*with title note

Twith subtitle note
twith authorl note
8with author2 note

with paper note.
2017. 2475-1421/2017/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:2 e The Agda Specification Team and First2 Last2

Projection and constructor names can be overloaded and are resolved by the type checker. We write R.w
for a resolved record projection name, R.c for a resolved record constructor name and D.c for a resolved
data constructor name.

Terms use a spine form for eliminations and thus are kept 8 and projection normal form. This means
that terms cannot be a S-redex (Ax.v)w nor a projection of a record value cz ¥ ..

t,bu,v = TE variables (eliminated by é)
| fe defined function (eliminated by €), includes postulates
| ¢cv data constructor applied to arguments v
| ¢z 0 record constructor with fields @ applied to arguments v
| Az.v lambda abstraction
| Fo data/record type name applied to arguments @
| (z:U)—>V dependent function type
| s Sort

We use uppercase letters T, U,V for terms that stand for types.
Eliminations e exists for functions and records. Functions are eliminated by application, records by
projection.

e == Qu application to term u
| taking projection 7

Other forms of elimination, like definiting a function by cases over some data structure, need pattern
matching, which is supported in function declarations, but not in terms directly.
Sorts s are the types of types. Here, we model a predicative hierarchy of universes Setg : Sety : Sety @

s == Set, universe of types of level n € N

We define sort supremum by Set; U Set; = Setyax(i,j)-

2.2 Telescopes and patterns
Telescopes A are like typing contexts I’ (see below), but right-associative. Telescopes are used e. g. for
parameter lists in declarations.

A o= empty telescope
| (z:T)A non-empty telescope; A can depend on z

Notation: iterated function types , defined by recursion on A:

=T =T
(z:U)A—=T = (z:U)—=(A—=T)

Patterns p are used for definition by cases. Patterns are made from variables x and data constructors
¢, but can also contain arbitrary terms u that do not bind any variables. The latter form is called
inaccessible pattern, or, due to the concrete syntax used in Agda, dot pattern.

p = T variable pattern
| ¢p constructor pattern
| |u] inaccessible pattern (aka dot pattern)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Core Agda e 1:3

Copatterns are to eliminations what patterns are to arguments. We match eliminations against
copatterns like we match arguments against patterns.

q == Qp application pattern
| projection pattern

2.3 Declarations

Agda has three main declaration forms that introduce global names into the signature Y. Function
declarations introduce global functions f defined by pattern matching. A function declaration consists
of a type signature ts and a list of function clauses cl. The signature has to preceed the clauses, but
between them other declarations are allowed, in order to facilitate mutually recursive definitions. Data
(type) declarations consist of a data signature ds and a data definition dd, which have to appear in this
order but can also be appart, to realize inductive-recursive definitions, for instance. Similarly record
(type) declarations consist of a record signature rs and a record declaration rd.

d = ts type signature
| el function clause
| ds data signature
| dd data definition
| s record signature
| rd record definition.

Type signatures consist of a global name f for the function and its type 7.
ts == f:T

A function clause for f consists of a copattern spine ¢ and a right hand side rhs. The pattern variables of
¢ are bound in context I'. The right hand side is either empty or has evidence that the case is impossible.

cdd = T'>fqg:U =rhs
rhs == t term (clause body)
| absurd # (Z # 0) absurd clause (each variable x; has empty type)

A data signature consists of a name D for the data type, a list of its parameters A, a list of itsindices
A’, and its target sort s.

dataDA: A > s

Data definitions repeat the parameter telescope A, since parameters will be mentioned in the types T of
the constructors c.

data D A wherec: T

Record signatures carry, in contrast to data signatures, no index telescope A’; as Agda does not support
indexed record types.

record RA : s
Record declarations supply a record constructor name ¢ and a list of fields m with their types T

record R A where
constructor ¢
field 7 : T

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 e The Agda Specification Team and First2 Last2

Declaration checking moves declarations to the signature X, but not literally, but in a refined form. A
signature is a list of signature declarations (used internally).

Y u= dy

ds, data D A: A’ — s where ¢: T

record R A : s where ¢ : T; projections 7 : T
function f : T where cl

TODO: UPDATE SIGNATURE DECLARATIONS.

3 TYPING RULES
3.1 Auxiliary judgements
Hereditary substitution m is defined simultaneously with active elimination (see below).

o(z)!efo] =v elo]=¢ vlo] =7

(ze)[o] (fe)lo] = fe (hv)lo] = hv'
Ull=U' Vio]=V' »
(@:0) s WVo]=@:0) v 77

|

haz=F|c|cz

slo] =s
Active elimination .
v[u/z] e =1 v le=1
Az.v ! Que = v’ v me=1 t!. =t rele = xee fele = fee

Note that since constructor and data and record type terms are fully applied, we do not need to give
rules for adding further applications to these. Of course, function type and sort expressions cannot be
applied either.

Function type application .

Viu/zg) '@ =T
T™h.=T (x:U)=VNlui=T

Signature lookup .

function f : T where cl € &

XEf:T
data D A: A’ — swherec:T € X data D A: A’ — swherec:T €%
YXFD: A=A —s YFDec:A—=T;
record R A : s where ¢ : T; projections 7 : T € &
YFR:A—s
record R A : s where ¢ : T; projections 7 : T € & record R A : s where ¢ : T; projections 7 : T € &
YFRc:A—=T YFRm: A—T;

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Core Agda e 1:5

3.2 Typing judgements for expressions
Typing contexts.

r = -|Tz:T

A = |z:TA

Well-typed contexts .

FEF FI—ET:S
'—2- }—ZI‘,x:T

Well-typed telescopes .

FEF FFET:S F,I'ZTFZA
F|_2~ Fl‘z(l‘T)A

z & dom(T")

Spine typing ‘ Plu:Utbksge: T‘ (u is neutral).

Flu:Utbsg-:U
Tbpu:U T|tQu:Tluja] Fse:V SFRr=T TUW(it)=U T|tn:Ukse:V
I't:Mz:UT Fy Que: V I'|t:Ruty.me:V
Fu:UkFxé:V TrkyU=U":s
F'u:U bkge:V

Term typing

(x:U)el P|lz:Utsge:T SHf:T L|f:Tkse:V

T by ae: T T by fé:V
XrFDe:T TNag=1 FJC:T'FZQT:DQIF YXkz:T F|z:T|—Eﬁ:VZ:::D|R
T'bscv:Dut 'kt 2za:V
I'z:U Fgv:V 'k U:s Lz:U b Vs
Pk Xew:(z:U)—>V Fhke(x:U)=>V:sus

Conversion .
fg=teyx ([q)le]=¢ tlo)]=v Trygfe:T Trgov:T
I'by fe=v:T
Phket:(z:U)—>V I'kFst:RU YFRcz: T
Fbtgt=Xxta:(x:U)—>V I' s t=cztm:RU

And many boring rules (equivalence, congruence) and rules for elimination equality‘ D|t:Tkge=e:V

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 e The Agda Specification Team and First2 Last2

3.3 Type emptiness

I Ht# ¢ :T|In context T, terms ¢ and t' of type T cannot ever be unified.

I'kev:T o :T , PHt#E:T FHt#¢:T r+¢=t":T
¢

T Fei#cd:T C Tr{#t:T TFt#d T

Skhe:As A S DAT AN[E/A]=A" TrHG#T A" Trt#¢:T TrFT=T:s

T Fci#ct’: Dt D Ht#t T
I' U # ¢ : A|In context I', argument lists ¥ and 7’ of telescope A cannot ever be unified.

F'Fo#o:T
Frod# 00 (x:T)A

F'ro=v:T Afv/x] = A’ THEo#v A x & FV(A) FFOH#T:A
Lot # 00 : (x:T)A PRt # 00 (x:T)A

Afif/A] =A" F[i/A]=5" T,A"F§" #5: A
I FASA S DAT £Dav

I' =T empty | In context I', data type T has no canonical inhabitants.

Ve. X FDe:U=TFUAT I' BT empty T =T ":s
I' - T empty I =T empty

3.4 Declaration typing
(Co)pattern variables | PV (p) = &

PV(z)={z} PV([v])=0 PV(cp)=PV(p)
PV (p) = LﬂPV(Pi)

PV(m)=0 PV(@p)=PV(p)

PV (q) = @PV(%)

Embedding of (co)patterns into terms | [p] =t

[z]=x [lv]]=v [ep]=c]p]
[7w]=.m [@p] =Q[p]

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Core Agda

Clause typing | f : T 5 ¢l

PV(q) = dom(T") Df:Thks[q]:U Fkxet:U
FTrs (o fq:U=1)
PV (q) = dom(T") Df:Thks[q]:U Vi. T' by I'(x;) empty
f:TtFks (> fq:U=absurd ¥)

Constructor typing ‘ A|U:A"—>sbksxc: T‘

AbyT—=T:s AT Fgv: A ATFsT=U7%v:s
AlU:A s5stkge: T =T

Declaration typing | X F d ~ X'

FedY FsT:s

X Ff:T ~ 3%, function f: T where -
Vi. f T Fs d;

Y[function f : T where -] & cl ~ S[function f : T where cl]

D¢gx Fo A A by A
Yhtdata DA:A — s~X,dataDA: A" — s

Vi. A|DA:A = stk :T;
Yldata D; A : A — 5] Fx data D A where ¢ : T ~ X[data D A : A" — s where ¢ : T
REY FsA

Y Fyrecord RA: s~ Y record RA:s

Al‘z(’IATT)—)RAS Ule—>(xRA)—>TZ[m7rj/7fj]

———— 1 ¢ dom(A)
Y[record R A : s] by record R A where constructor ¢, field 7 : T
~ X[record R A : swherec: A — (rm:T) — R A;projections 7 : U]
4 EVALUATION
YFu/o=0 vIim/pi=o
Skho/|u] =- Yho/x=[v/x] Yhcv/p=o Ytov/ezp=o Skowfw=-
Sho—v Yo' /ep=c
Yhto/cp=o
Weak head reduction

fg=teXx Yhe/g=o Yhelg=0c Yhe/g=o

Y+ fee — tlo] e k)= Ykee/q,g=0cWo

1:7

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 e The Agda Specification Team and First2 Last2

5 COVERAGE
Pattern refinement [T F p: A Z=ST i - A

(x:Duvel) YXFDec:T

Tr—cC

F'tp: A=T'Fpolcy/x]:?

6 TERMINATION
7 POSITIVITY
8 EXTENSIONS

8.1 Extended record declarations

Record types

record R : s where
[constructor c]
[(co)inductive]
[(no-)eta-equality]
rdx*

Record declaration

rd ::= field : T

| ts

| c1
ACKNOWLEDGMENTS

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

